IEEE Trans Image Process. 2017 Sep;26(9):4311-4320. doi: 10.1109/TIP.2017.2718183. Epub 2017 Jun 21.
We address the task of single depth image inpainting. Without the corresponding color images, previous or next frames, depth image inpainting is quite challenging. One natural solution is to regard the image as a matrix and adopt the low rank regularization just as color image inpainting. However, the low rank assumption does not make full use of the properties of depth images. A shallow observation inspires us to penalize the nonzero gradients by sparse gradient regularization. However, statistics show that though most pixels have zero gradients, there is still a non-ignorable part of pixels, whose gradients are small but nonzero. Based on this property of depth images, we propose a low gradient regularization method in which we reduce the penalty for small gradients while penalizing the nonzero gradients to allow for gradual depth changes. The proposed low gradient regularization is integrated with the low rank regularization into the low rank low gradient approach for depth image inpainting. We compare our proposed low gradient regularization with the sparse gradient regularization. The experimental results show the effectiveness of our proposed approach.
我们解决了单幅深度图像修复的问题。如果没有相应的彩色图像、前一帧或下一帧,深度图像修复就极具挑战性。一个自然的解决方案是将图像视为矩阵,并采用低秩正则化,就像彩色图像修复一样。然而,低秩假设并没有充分利用深度图像的特性。一个浅显的观察结果启发我们通过稀疏梯度正则化来惩罚非零梯度。然而,统计数据表明,尽管大多数像素的梯度为零,但仍有一部分像素的梯度很小但非零。基于深度图像的这一特性,我们提出了一种低梯度正则化方法,该方法减少了对小梯度的惩罚,同时对非零梯度进行惩罚,以允许深度逐渐变化。所提出的低梯度正则化与低秩正则化集成到深度图像修复的低秩低梯度方法中。我们将所提出的低梯度正则化与稀疏梯度正则化进行了比较。实验结果表明了我们提出的方法的有效性。