Suppr超能文献

具有无限宽度神经网络的矩阵完成的简单、快速和灵活框架。

Simple, fast, and flexible framework for matrix completion with infinite width neural networks.

机构信息

Laboratory for Information & Decision Systems, Massachusetts Institute of Technology, Cambridge, MA 02139.

Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA 02142.

出版信息

Proc Natl Acad Sci U S A. 2022 Apr 19;119(16):e2115064119. doi: 10.1073/pnas.2115064119. Epub 2022 Apr 11.

Abstract

Matrix completion problems arise in many applications including recommendation systems, computer vision, and genomics. Increasingly larger neural networks have been successful in many of these applications but at considerable computational costs. Remarkably, taking the width of a neural network to infinity allows for improved computational performance. In this work, we develop an infinite width neural network framework for matrix completion that is simple, fast, and flexible. Simplicity and speed come from the connection between the infinite width limit of neural networks and kernels known as neural tangent kernels (NTK). In particular, we derive the NTK for fully connected and convolutional neural networks for matrix completion. The flexibility stems from a feature prior, which allows encoding relationships between coordinates of the target matrix, akin to semisupervised learning. The effectiveness of our framework is demonstrated through competitive results for virtual drug screening and image inpainting/reconstruction. We also provide an implementation in Python to make our framework accessible on standard hardware to a broad audience.

摘要

矩阵补全问题在许多应用中都会出现,包括推荐系统、计算机视觉和基因组学。越来越多的神经网络在这些应用中取得了成功,但计算成本也相当高。值得注意的是,将神经网络的宽度扩展到无穷大可以提高计算性能。在这项工作中,我们开发了一种用于矩阵补全的无限宽度神经网络框架,它简单、快速且灵活。简单和快速来自神经网络和核之间的无限宽度极限的连接,这些核被称为神经切核(NTK)。具体来说,我们为全连接和卷积神经网络推导了矩阵补全的 NTK。灵活性源于特征先验,它允许对目标矩阵坐标之间的关系进行编码,类似于半监督学习。我们的框架的有效性通过虚拟药物筛选和图像修复/重建的竞争结果得到证明。我们还提供了一个用 Python 编写的实现,以便将我们的框架在标准硬件上提供给更广泛的受众。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87f8/9169779/251e44d9b81c/pnas.2115064119fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验