Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Parc Cientific de Barcelona, Baldiri Reixac 10, 08028 Barcelona, Spain.
Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Parc Cientific de Barcelona, Baldiri Reixac 10, 08028 Barcelona, Spain.
Semin Cell Dev Biol. 2017 Nov;71:22-29. doi: 10.1016/j.semcdb.2017.06.014. Epub 2017 Jun 20.
Neurons allocated to sense organs respond rapidly to mechanical signals dictating behavioral responses at the organism level. The receptors that transduce these signals, and underlie these senses, are mechanically gated channels. Research on mechanosensation over the past decade, employing in many cases Drosophila as a model, has focused in typifying these receptors and in exploring the different ways, depending on context, in which these mechanosensors are modulated. In this review, we discuss first what we have learned from Drosophila on these mechanisms and we describe the different mechanosensory organs present in the Drosophila larvae and adult. Secondly, we focus on the progress obtained by studying the fly on the characterization of the mechanosensory crosstalk underlying complex behaviors like motor coordination. Finally, turning to a cellular level, we summarize what is known on the mechanical properties and sensing capabilities of neural cells and how they may affect neural physiology and pathology.
分配到感觉器官的神经元对机械信号做出快速反应,从而在生物体水平上调节行为反应。这些信号转导受体,即机械门控通道,是这些感觉的基础。过去十年的机械感觉研究,在许多情况下以果蝇为模型,其重点在于对这些受体进行分类,并探索根据具体情况调节这些机械感受器的不同方式。在这篇综述中,我们首先讨论了从果蝇身上学到的关于这些机制的知识,并描述了果蝇幼虫和成虫中存在的不同机械感觉器官。其次,我们集中讨论了通过研究苍蝇在描述运动协调等复杂行为的机械感觉串扰方面所取得的进展。最后,我们从细胞水平总结了关于神经细胞的机械特性和传感能力的已知知识,以及它们如何影响神经生理学和病理学。