Suppr超能文献

HO 吸附对单结负微分电导行为的影响。

Effect of HO Adsorption on Negative Differential Conductance Behavior of Single Junction.

机构信息

School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.

出版信息

Sci Rep. 2017 Jun 23;7(1):4195. doi: 10.1038/s41598-017-04465-3.

Abstract

Large negative differential conductance (NDC) at lower bias regime is a very desirable functional property for single molecular device. Due to the non-conjugated segment separating two conjugated branches, the single thiolated arylethynylene molecule with 9,10-dihydroanthracene core (denoted as TADHA) presents excellent NDC behavior in lower bias regime. Based on the ab initio calculation and non-equilibrium Green's function formalism, the NDC behavior of TADHA molecular device and the HO-molecule-adsorption effects are studied systematically. The numerical results show that the NDC behavior of TADHA molecular junction originates from the Stark effect of the applied bias which splits the degeneration of the highest occupied molecular orbital (HOMO) and HOMO-1. The HO molecule adsorbed on the terminal sulphur atom strongly suppresses the conductance of TADHA molecular device and destroys the NDC behavior in the lower bias regime. Single or separated HO molecules adsorbed on the backbone of TADHA molecule can depress the energy levels of molecular orbitals, but have little effects on the NDC behavior of the TADHA molecular junction. Aggregate of several HO molecules adsorbed on one branch of TADHA molecule can dramatically enhance the conductance and NDC behavior of the molecular junction, and result in rectifier behavior.

摘要

在较低的偏压范围内出现大的负微分电导(NDC)是单分子器件非常理想的功能特性。由于两个共轭支之间存在非共轭片段,带有 9,10-二氢蒽核心的单硫代芳基乙炔分子(表示为 TADHA)在较低的偏压范围内表现出优异的 NDC 行为。基于从头算计算和非平衡格林函数形式,系统地研究了 TADHA 分子器件的 NDC 行为和 HO-分子吸附效应。数值结果表明,TADHA 分子结的 NDC 行为源于施加偏压的斯塔克效应,该效应分裂了最高占据分子轨道(HOMO)和 HOMO-1 的简并。吸附在末端硫原子上的 HO 分子强烈抑制 TADHA 分子器件的电导率并破坏较低偏压范围内的 NDC 行为。吸附在 TADHA 分子主链上的单个或分离的 HO 分子会降低分子轨道的能级,但对 TADHA 分子结的 NDC 行为影响不大。吸附在 TADHA 分子一个支链上的几个 HO 分子的聚集可以显著增强分子结的电导率和 NDC 行为,并导致整流行为。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dcbc/5482906/18a6cc3ec60e/41598_2017_4465_Fig1_HTML.jpg

相似文献

3
Tuning the conductance of H2O@C60 by position of the encapsulated H2O.
Sci Rep. 2015 Dec 8;5:17932. doi: 10.1038/srep17932.
8
Large negative differential conductance in single-molecule break junctions.单分子断裂结中的大负微分电导。
Nat Nanotechnol. 2014 Oct;9(10):830-4. doi: 10.1038/nnano.2014.177. Epub 2014 Aug 31.

本文引用的文献

3
4
Molecular-Scale Electronics: From Concept to Function.分子尺度电子学:从概念到功能。
Chem Rev. 2016 Apr 13;116(7):4318-440. doi: 10.1021/acs.chemrev.5b00680. Epub 2016 Mar 16.
7
Rectification inversion in oxygen substituted graphyne-graphene-based heterojunctions.
Phys Chem Chem Phys. 2015 Feb 7;17(5):3115-22. doi: 10.1039/c4cp04859h. Epub 2014 Dec 17.
10
Large negative differential conductance in single-molecule break junctions.单分子断裂结中的大负微分电导。
Nat Nanotechnol. 2014 Oct;9(10):830-4. doi: 10.1038/nnano.2014.177. Epub 2014 Aug 31.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验