Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA.
Mol Ecol Resour. 2017 Nov;17(6):e84-e93. doi: 10.1111/1755-0998.12695. Epub 2017 Jul 25.
High-throughput sequencing methods for genotyping genome-wide markers are being rapidly adopted for phylogenetics of nonmodel organisms in conservation and biodiversity studies. However, the reproducibility of SNP genotyping and degree of marker overlap or compatibility between datasets from different methodologies have not been tested in nonmodel systems. Using double-digest restriction site-associated DNA sequencing, we sequenced a common set of 22 specimens from the butterfly genus Speyeria on two different Illumina platforms, using two variations of library preparation. We then used a de novo approach to bioinformatic locus assembly and SNP discovery for subsequent phylogenetic analyses. We found a high rate of locus recovery despite differences in library preparation and sequencing platforms, as well as overall high levels of data compatibility after data processing and filtering. These results provide the first application of NGS methods for phylogenetic reconstruction in Speyeria and support the use and long-term viability of SNP genotyping applications in nonmodel systems.
高通量测序方法用于全基因组标记的基因分型,正在迅速应用于保护和生物多样性研究中的非模式生物的系统发育。然而,在非模式系统中,尚未测试 SNP 基因分型的可重复性以及不同方法数据集之间标记重叠或兼容性的程度。使用双酶切限制位点相关 DNA 测序,我们使用两种文库制备方法,在两个不同的 Illumina 平台上对蝴蝶属 Speyeria 的 22 个样本进行了测序。然后,我们使用从头开始的方法进行生物信息学位点组装和 SNP 发现,以进行随后的系统发育分析。尽管文库制备和测序平台存在差异,以及数据处理和过滤后的整体数据兼容性水平很高,但我们发现了很高的基因座回收率。这些结果首次在 Speyeria 中应用了 NGS 方法进行系统发育重建,并支持 SNP 基因分型应用在非模式系统中的使用和长期可行性。