Suppr超能文献

研究 DNA、RNA 和蛋白质特征,作为区分致病性同义变体的手段。

Investigating DNA-, RNA-, and protein-based features as a means to discriminate pathogenic synonymous variants.

机构信息

School of Information and Communication Technology, Griffith University, Southport, Queensland, 4222, Australia.

Institute for Glycomics, Griffith University, Southport, Queensland, 4222, Australia.

出版信息

Hum Mutat. 2017 Oct;38(10):1336-1347. doi: 10.1002/humu.23283. Epub 2017 Jul 10.

Abstract

Synonymous single-nucleotide variants (SNVs), although they do not alter the encoded protein sequences, have been implicated in many genetic diseases. Experimental studies indicate that synonymous SNVs can lead to changes in the secondary and tertiary structures of DNA and RNA, thereby affecting translational efficiency, cotranslational protein folding as well as the binding of DNA-/RNA-binding proteins. However, the importance of these various features in disease phenotypes is not clearly understood. Here, we have built a support vector machine (SVM) model (termed DDIG-SN) as a means to discriminate disease-causing synonymous variants. The model was trained and evaluated on nearly 900 disease-causing variants. The method achieves robust performance with the area under the receiver operating characteristic curve of 0.84 and 0.85 for protein-stratified 10-fold cross-validation and independent testing, respectively. We were able to show that the disease-causing effects in the immediate proximity to exon-intron junctions (1-3 bp) are driven by the loss of splicing motif strength, whereas the gain of splicing motif strength is the primary cause in regions further away from the splice site (4-69 bp). The method is available as a part of the DDIG server at http://sparks-lab.org/ddig.

摘要

同义单核苷酸变异(SNVs)虽然不会改变编码的蛋白质序列,但已被牵连到许多遗传疾病中。实验研究表明,同义 SNVs 可以导致 DNA 和 RNA 的二级和三级结构发生变化,从而影响翻译效率、共翻译蛋白折叠以及 DNA/RNA 结合蛋白的结合。然而,这些各种特征在疾病表型中的重要性尚不清楚。在这里,我们构建了一种支持向量机(SVM)模型(称为 DDIG-SN),作为区分致病同义变体的一种手段。该模型在近 900 种致病变体上进行了训练和评估。该方法在蛋白质分层的 10 倍交叉验证和独立测试中,接收者操作特征曲线下的面积分别为 0.84 和 0.85,表现出稳健的性能。我们能够表明,外显子-内含子交界处(1-3bp)附近的致病效应是由剪接基序强度的丧失驱动的,而远离剪接位点(4-69bp)的剪接基序强度的获得是主要原因。该方法可作为 DDIG 服务器的一部分在 http://sparks-lab.org/ddig 上使用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验