Nicholas School of the Environment, Duke University, Durham, NC, USA.
Conservation International, Arlington, VA, USA.
Glob Chang Biol. 2017 Dec;23(12):5120-5135. doi: 10.1111/gcb.13775. Epub 2017 Jun 26.
Globally, trees are increasingly dying from extreme drought, a trend that is expected to increase with climate change. Loss of trees has significant ecological, biophysical, and biogeochemical consequences. In 2011, a record drought caused widespread tree mortality in Texas. Using remotely sensed imagery, we quantified canopy loss during and after the drought across the state at 30-m spatial resolution, from the eastern pine/hardwood forests to the western shrublands, a region that includes the boundaries of many species ranges. Canopy loss observations in 200 multitemporal fine-scale orthophotos (1-m) were used to train coarser Landsat imagery (30-m) to create 30-m binary statewide canopy loss maps. We found that canopy loss occurred across all major ecoregions of Texas, with an average loss of 9.5%. The drought had the highest impact in post oak woodlands, pinyon-juniper shrublands and Ashe juniper woodlands. Focusing on a 100-km by ~1,000-km transect spanning the State's fivefold east-west precipitation gradient (1,500 to ~300 mm), we compared spatially explicit 2011 climatic anomalies to our canopy loss maps. Much of the canopy loss occurred in areas that passed specific climatic thresholds: warm season anomalies in mean temperature (+1.6°C) and vapor pressure deficit (VPD, +0.66 kPa), annual percent deviation in precipitation (-38%), and 2011 difference between precipitation and potential evapotranspiration (-1,206 mm). Although similarly low precipitation occurred during the landmark 1950s drought, the VPD and temperature anomalies observed in 2011 were even greater. Furthermore, future climate data under the representative concentration pathway 8.5 trajectory project that average values will surpass the 2011 VPD anomaly during the 2070-2099 period and the temperature anomaly during the 2040-2099 period. Identifying vulnerable ecological systems to drought stress and climate thresholds associated with canopy loss will aid in predicting how forests will respond to a changing climate and how ecological landscapes will change in the near term.
全球范围内,树木因极端干旱而死亡的情况日益增多,而这种趋势预计会随着气候变化而加剧。树木的损失会带来显著的生态、生物物理和生物地球化学影响。2011 年,一场创纪录的干旱导致德克萨斯州大范围树木死亡。我们利用遥感图像,以 30 米的空间分辨率量化了全州范围内干旱期间和之后的树冠损失,范围从东部的松树/硬木林到西部的灌木林,该区域包括许多物种分布范围的边界。利用约 200 张多时相精细尺度正射影像(1 米)的树冠损失观测结果,对较粗的 Landsat 图像(30 米)进行训练,以创建 30 米的全州范围内树冠损失二进制地图。我们发现,德克萨斯州的所有主要生态区都发生了树冠损失,平均损失为 9.5%。在橡木林地、松叶杜松灌丛和阿什杜松林地,干旱的影响最大。我们关注的是一条跨越该州 5 倍东西向降水梯度(约 1500 至 300 毫米)的 100 公里乘 1000 公里的横剖面,将 2011 年的空间显式气候异常与我们的树冠损失地图进行了比较。大部分树冠损失发生在特定气候阈值通过的地区:暖季平均温度异常(+1.6°C)和水汽压亏缺(VPD,+0.66 kPa)、年降水百分偏差(-38%)以及 2011 年降水与潜在蒸散量之间的差异(-1206 毫米)。尽管 20 世纪 50 年代的标志性干旱也发生了类似的低降水,但 2011 年观察到的 VPD 和温度异常甚至更大。此外,根据代表性浓度路径 8.5 轨迹项目的未来气候数据,预计在 2070-2099 年期间,平均值将超过 2011 年的 VPD 异常,而在 2040-2099 年期间,平均值将超过 2011 年的温度异常。确定易受干旱压力影响的生态系统和与树冠损失相关的气候阈值,将有助于预测森林对气候变化的反应以及生态景观在近期内的变化。