Suppr超能文献

NetNorM:利用基因网络在体细胞外显子突变数据中获取癌症相关信息以进行癌症分层和预后评估。

NetNorM: Capturing cancer-relevant information in somatic exome mutation data with gene networks for cancer stratification and prognosis.

作者信息

Le Morvan Marine, Zinovyev Andrei, Vert Jean-Philippe

机构信息

MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, 75006 Paris, France.

Institut Curie, 75248 Paris Cedex 5, France.

出版信息

PLoS Comput Biol. 2017 Jun 26;13(6):e1005573. doi: 10.1371/journal.pcbi.1005573. eCollection 2017 Jun.

Abstract

Genome-wide somatic mutation profiles of tumours can now be assessed efficiently and promise to move precision medicine forward. Statistical analysis of mutation profiles is however challenging due to the low frequency of most mutations, the varying mutation rates across tumours, and the presence of a majority of passenger events that hide the contribution of driver events. Here we propose a method, NetNorM, to represent whole-exome somatic mutation data in a form that enhances cancer-relevant information using a gene network as background knowledge. We evaluate its relevance for two tasks: survival prediction and unsupervised patient stratification. Using data from 8 cancer types from The Cancer Genome Atlas (TCGA), we show that it improves over the raw binary mutation data and network diffusion for these two tasks. In doing so, we also provide a thorough assessment of somatic mutations prognostic power which has been overlooked by previous studies because of the sparse and binary nature of mutations.

摘要

肿瘤的全基因组体细胞突变谱现在可以得到有效评估,并有望推动精准医学的发展。然而,由于大多数突变的频率较低、肿瘤间突变率不同,以及存在大量掩盖驱动事件贡献的乘客事件,对突变谱进行统计分析具有挑战性。在此,我们提出一种名为NetNorM的方法,以基因网络作为背景知识,将全外显子组体细胞突变数据以增强癌症相关信息的形式呈现出来。我们评估了它在两项任务中的相关性:生存预测和无监督患者分层。使用来自癌症基因组图谱(TCGA)的8种癌症类型的数据,我们表明,在这两项任务中,它比原始的二元突变数据和网络扩散方法更具优势。在此过程中,我们还对体细胞突变的预后能力进行了全面评估,由于突变的稀疏性和二元性,这一点在以往的研究中被忽视了。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de99/5507468/b8b3b46f71d4/pcbi.1005573.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验