Parker Andrew M, Yang Lang, Farzi Mohsen, Pozo José M, Frangi Alejandro F, Wilkinson J Mark
Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK.
Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK; Centre for Computational Imaging & Simulation Technologies in Biomedicine (CISTIB), Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield, UK.
J Clin Densitom. 2017 Oct-Dec;20(4):480-485. doi: 10.1016/j.jocd.2017.05.013. Epub 2017 Jun 23.
The gold standard tool for measuring periprosthetic bone mineral density (BMD) is dual-energy X-ray absorptiometry (DXA). However, resolution of the method is limited due to the aggregation of pixel data into large regions of interest for clinical and statistical analysis. We have previously validated a region-free analysis method (DXA-RFA) for quantitating BMD change at the pixel level around femoral prostheses. Here, we applied the DXA-RFA method to the pelvis, and quantitated its precision in this setting using repeated DXA scans taken on the same day after repositioning in 29 patients after total hip arthroplasty. Scans were semiautomatically segmented using edge detection, intensity thresholding, and morphologic operations, and elastically registered to a common template generated through generalized Procrustes analysis. Pixel-wise BMD precision between repeated scans was expressed as a coefficient of variation %. Longitudinal BMD change was assessed in an independent group of 24 patients followed up for 260 wk. DXA-RFA spatial resolution of 0.31 mm provided approximately 12,500 data points per scan. The median data-point precision was 17.8% (interquartile range 14.3%-22.7%). The anatomic distribution of the precision errors showed poorer precision at the bone borders and superior precision to the obturator foramen. Evaluation of longitudinal BMD showed focal BMD change at 260 wk of -26.8% adjacent to the prosthesis-bone interface (1% of bone map area). In contrast, BMD change of +39.0% was observed at the outer aspect of the ischium (3% of bone map area). Pelvic DXA-RFA is less precise than conventional DXA analysis. However, it is sensitive for detecting local BMD change events in groups of patients, and provides a novel tool for quantitating local bone mass after joint replacement. Using this method, we were able to resolve BMD change over small areas adjacent to the implant-bone interface and in the ischial region over 260 wk after total hip arthroplasty.
测量假体周围骨矿物质密度(BMD)的金标准工具是双能X线吸收法(DXA)。然而,由于为了临床和统计分析将像素数据聚合到较大的感兴趣区域,该方法的分辨率受到限制。我们之前已经验证了一种无区域分析方法(DXA-RFA),用于定量股骨假体周围像素水平的BMD变化。在此,我们将DXA-RFA方法应用于骨盆,并通过对29例全髋关节置换术后患者在同一天重新定位后进行重复DXA扫描,定量该方法在这种情况下的精度。扫描使用边缘检测、强度阈值化和形态学操作进行半自动分割,并弹性配准到通过广义Procrustes分析生成的通用模板。重复扫描之间的逐像素BMD精度以变异系数百分比表示。在一个由24例患者组成的独立队列中进行随访260周,评估纵向BMD变化。DXA-RFA的空间分辨率为0.31毫米,每次扫描提供约12,500个数据点。数据点精度的中位数为17.8%(四分位间距14.3%-22.7%)。精度误差的解剖分布显示,在骨边界处精度较差,而在闭孔处精度较高。纵向BMD评估显示,在260周时,假体-骨界面相邻处的局部BMD变化为-26.8%(占骨图面积的1%)。相比之下,在坐骨外侧观察到BMD变化为+39.0%(占骨图面积的3%)。骨盆DXA-RFA不如传统DXA分析精确。然而,它对于检测患者群体中的局部BMD变化事件很敏感,并为关节置换后定量局部骨量提供了一种新工具。使用这种方法,我们能够解析全髋关节置换术后260周内在植入物-骨界面相邻的小区域以及坐骨区域的BMD变化。