Suppr超能文献

线粒体靶向的三苯基鏻基化合物:合成、作用机制及治疗与诊断应用

Mitochondria-Targeted Triphenylphosphonium-Based Compounds: Syntheses, Mechanisms of Action, and Therapeutic and Diagnostic Applications.

作者信息

Zielonka Jacek, Joseph Joy, Sikora Adam, Hardy Micael, Ouari Olivier, Vasquez-Vivar Jeannette, Cheng Gang, Lopez Marcos, Kalyanaraman Balaraman

机构信息

Institute of Applied Radiation Chemistry, Lodz University of Technology , ul. Wroblewskiego 15, Lodz 93-590, Poland.

Aix Marseille Univ , CNRS, ICR, UMR 7273, Marseille 13013, France.

出版信息

Chem Rev. 2017 Aug 9;117(15):10043-10120. doi: 10.1021/acs.chemrev.7b00042. Epub 2017 Jun 27.

Abstract

Mitochondria are recognized as one of the most important targets for new drug design in cancer, cardiovascular, and neurological diseases. Currently, the most effective way to deliver drugs specifically to mitochondria is by covalent linking a lipophilic cation such as an alkyltriphenylphosphonium moiety to a pharmacophore of interest. Other delocalized lipophilic cations, such as rhodamine, natural and synthetic mitochondria-targeting peptides, and nanoparticle vehicles, have also been used for mitochondrial delivery of small molecules. Depending on the approach used, and the cell and mitochondrial membrane potentials, more than 1000-fold higher mitochondrial concentration can be achieved. Mitochondrial targeting has been developed to study mitochondrial physiology and dysfunction and the interaction between mitochondria and other subcellular organelles and for treatment of a variety of diseases such as neurodegeneration and cancer. In this Review, we discuss efforts to target small-molecule compounds to mitochondria for probing mitochondria function, as diagnostic tools and potential therapeutics. We describe the physicochemical basis for mitochondrial accumulation of lipophilic cations, synthetic chemistry strategies to target compounds to mitochondria, mitochondrial probes, and sensors, and examples of mitochondrial targeting of bioactive compounds. Finally, we review published attempts to apply mitochondria-targeted agents for the treatment of cancer and neurodegenerative diseases.

摘要

线粒体被认为是癌症、心血管疾病和神经疾病新药设计最重要的靶点之一。目前,将药物特异性递送至线粒体的最有效方法是将亲脂性阳离子(如烷基三苯基鏻部分)与感兴趣的药效基团共价连接。其他离域亲脂性阳离子,如罗丹明、天然和合成的线粒体靶向肽以及纳米颗粒载体,也已用于小分子的线粒体递送。根据所采用的方法以及细胞和线粒体膜电位,线粒体浓度可提高1000倍以上。线粒体靶向已被用于研究线粒体生理学和功能障碍以及线粒体与其他亚细胞器之间的相互作用,并用于治疗多种疾病,如神经退行性疾病和癌症。在本综述中,我们讨论了将小分子化合物靶向线粒体以探测线粒体功能、作为诊断工具和潜在治疗方法的相关研究。我们描述了亲脂性阳离子在线粒体中积累的物理化学基础、将化合物靶向线粒体的合成化学策略、线粒体探针和传感器,以及生物活性化合物线粒体靶向的实例。最后,我们综述了已发表的将线粒体靶向剂应用于癌症和神经退行性疾病治疗的尝试。

相似文献

4
TPP-based conjugates: potential targeting ligands.基于 TPP 的缀合物:潜在的靶向配体。
Drug Discov Today. 2024 Jun;29(6):103983. doi: 10.1016/j.drudis.2024.103983. Epub 2024 Apr 18.

引用本文的文献

本文引用的文献

5
MitoSOX-Based Flow Cytometry for Detecting Mitochondrial ROS.基于MitoSOX的流式细胞术检测线粒体活性氧
React Oxyg Species (Apex). 2016;2(5):361-370. doi: 10.20455/ros.2016.865. Epub 2016 Sep 1.
9
Photodynamic Therapy: Past, Present and Future.光动力疗法:过去、现在和未来。
Chem Rec. 2017 Aug;17(8):775-802. doi: 10.1002/tcr.201600121. Epub 2017 Jan 2.
10
Understanding and preventing mitochondrial oxidative damage.了解并预防线粒体氧化损伤。
Biochem Soc Trans. 2016 Oct 15;44(5):1219-1226. doi: 10.1042/BST20160108.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验