Department of Zoology, The University of British Columbia, Vancouver, BC, Canada.
Mol Biol Evol. 2017 Sep 1;34(9):2153-2162. doi: 10.1093/molbev/msx179.
Vertebrate hypoxia tolerance can emerge from modifications to the oxygen (O2) transport cascade, but whether there is adaptive variation to O2 binding at the terminus of this cascade, mitochondrial cytochrome c oxidase (COX), is not known. In order to address the hypothesis that hypoxia tolerance is associated with enhanced O2 binding by mitochondria we undertook a comparative analysis of COX O2 kinetics across species of intertidal sculpins (Cottidae, Actinopterygii) that vary in hypoxia tolerance. Our analysis revealed a significant relationship between hypoxia tolerance (critical O2 tension of O2 consumption rate; Pcrit), mitochondrial O2 binding affinity (O2 tension at which mitochondrial respiration was half maximal; P50), and COX O2-binding affinity (apparent Michaelis-Menten constant for O2 binding to COX; Km,app O2). The more hypoxia tolerant species had both a lower mitochondrial P50 and lower COX Km,app O2, facilitating the maintenance of mitochondrial function to a lower O2 tension than in hypoxia intolerant species. Additionally, hypoxia tolerant species had a lower overall COX Vmax but higher mitochondrial COX respiration rate when expressed relative to maximal electron transport system respiration rate. In silico analyses of the COX3 subunit postulated as the entry point for O2 into the COX protein catalytic core, points to variation in COX3 protein stability (estimated as free energy of unfolding) contributing to the variation in COX Km,app O2. We propose that interactions between COX3 and cardiolipin at four amino acid positions along the same alpha-helix forming the COX3 v-cleft represent likely determinants of interspecific differences in COX Km,app O2.
脊椎动物的低氧耐受能力可以通过对氧气(O2)运输级联的修饰而产生,但在这个级联的末端——线粒体细胞色素 c 氧化酶(COX)——是否存在与 O2 结合的适应性变化尚不清楚。为了验证低氧耐受能力与线粒体中 O2 结合增强有关的假设,我们对不同耐缺氧能力的潮间带拟鲈科(Cottidae,辐鳍鱼纲)鱼类的 COX O2 动力学进行了比较分析。我们的分析表明,低氧耐受能力(耗氧量的临界 O2 张力;Pcrit)、线粒体 O2 结合亲和力(线粒体呼吸达到一半最大时的 O2 张力;P50)和 COX O2 结合亲和力(COX 与 O2 结合的表观米氏常数;Km,app O2)之间存在显著关系。更耐缺氧的物种具有更低的线粒体 P50 和更低的 COX Km,app O2,这有助于在比不耐缺氧物种更低的 O2 张力下维持线粒体功能。此外,当以最大电子传递系统呼吸速率为参照时,耐缺氧物种的 COX Vmax 整体较低,但线粒体 COX 呼吸速率较高。对作为 O2 进入 COX 蛋白催化核心入口的 COX3 亚基进行的计算机模拟分析表明,COX3 蛋白稳定性(估计为解折叠自由能)的变化可能导致 COX Km,app O2 的变化。我们提出,COX3 与沿形成 COX3 v 裂缝的同一α-螺旋的四个氨基酸位置的心磷脂之间的相互作用可能是 COX Km,app O2 种间差异的决定因素。