Suppr超能文献

局部热能作为玻璃中的结构指标。

Local thermal energy as a structural indicator in glasses.

机构信息

Chemical Physics Department, Weizmann Institute of Science, Rehovot 7610001, Israel.

Institute for Theoretical Physics, University of Amsterdam, 1098 XH Amsterdam, The Netherlands.

出版信息

Proc Natl Acad Sci U S A. 2017 Jul 11;114(28):7289-7294. doi: 10.1073/pnas.1704403114. Epub 2017 Jun 27.

Abstract

Identifying heterogeneous structures in glasses-such as localized soft spots-and understanding structure-dynamics relations in these systems remain major scientific challenges. Here, we derive an exact expression for the local thermal energy of interacting particles (the mean local potential energy change caused by thermal fluctuations) in glassy systems by a systematic low-temperature expansion. We show that the local thermal energy can attain anomalously large values, inversely related to the degree of softness of localized structures in a glass, determined by a coupling between internal stresses-an intrinsic signature of glassy frustration-anharmonicity and low-frequency vibrational modes. These anomalously large values follow a fat-tailed distribution, with a universal exponent related to the recently observed universal [Formula: see text] density of states of quasilocalized low-frequency vibrational modes. When the spatial thermal energy field-a "softness field"-is considered, this power law tail manifests itself by highly localized spots, which are significantly softer than their surroundings. These soft spots are shown to be susceptible to plastic rearrangements under external driving forces, having predictive powers that surpass those of the normal modes-based approach. These results offer a general, system/model-independent, physical/observable-based approach to identify structural properties of quiescent glasses and relate them to glassy dynamics.

摘要

识别玻璃中的不均匀结构(如局部软点)并理解这些系统中的结构-动力学关系仍然是重大的科学挑战。在这里,我们通过系统的低温展开,推导出玻璃态系统中相互作用粒子的局部热能(由热涨落引起的平均局部势能变化)的精确表达式。我们表明,局部热能可以达到异常大的值,与玻璃中局部结构的柔软度成反比,这由内部应力之间的耦合决定——玻璃受挫的内在特征——非谐性和低频振动模式。这些异常大的值遵循胖尾分布,具有与最近观察到的准局部低频振动模式的通用[公式:见文本]态密度相关的通用指数。当考虑空间热能场(“柔软度场”)时,这种幂律尾部表现为高度局部化的斑点,其柔软度明显高于周围环境。这些软点在外部驱动力作用下容易发生塑性重排,其预测能力超过基于正常模式的方法。这些结果提供了一种通用的、与系统/模型无关的、基于物理/可观测的方法来识别静止玻璃的结构特性,并将其与玻璃动力学联系起来。

相似文献

1
Local thermal energy as a structural indicator in glasses.局部热能作为玻璃中的结构指标。
Proc Natl Acad Sci U S A. 2017 Jul 11;114(28):7289-7294. doi: 10.1073/pnas.1704403114. Epub 2017 Jun 27.
2
6
Probing the non-Debye low-frequency excitations in glasses through random pinning.通过随机钉扎探究玻璃中的非德拜低频激发。
Proc Natl Acad Sci U S A. 2018 Aug 28;115(35):8700-8704. doi: 10.1073/pnas.1805024115. Epub 2018 Aug 13.
7
Statistics and Properties of Low-Frequency Vibrational Modes in Structural Glasses.结构玻璃中低频振动模式的统计与特性
Phys Rev Lett. 2016 Jul 15;117(3):035501. doi: 10.1103/PhysRevLett.117.035501. Epub 2016 Jul 12.

引用本文的文献

2
Picture of Glass-Forming Liquids.玻璃形成液体的图片。
J Phys Chem Lett. 2024 Feb 15;15(6):1603-1617. doi: 10.1021/acs.jpclett.3c03308. Epub 2024 Feb 2.
6
Pinching a glass reveals key properties of its soft spots.捏碎一块玻璃可以揭示其软弱点的关键特性。
Proc Natl Acad Sci U S A. 2020 Mar 10;117(10):5228-5234. doi: 10.1073/pnas.1919958117. Epub 2020 Feb 24.
8
Low-frequency vibrational modes of stable glasses.稳定玻璃的低频振动模式。
Nat Commun. 2019 Jan 3;10(1):26. doi: 10.1038/s41467-018-07978-1.
9
Continuum limit of the vibrational properties of amorphous solids.无定形固体振动特性的连续极限。
Proc Natl Acad Sci U S A. 2017 Nov 14;114(46):E9767-E9774. doi: 10.1073/pnas.1709015114. Epub 2017 Oct 31.

本文引用的文献

1
Continuum limit of the vibrational properties of amorphous solids.无定形固体振动特性的连续极限。
Proc Natl Acad Sci U S A. 2017 Nov 14;114(46):E9767-E9774. doi: 10.1073/pnas.1709015114. Epub 2017 Oct 31.
3
Statistics and Properties of Low-Frequency Vibrational Modes in Structural Glasses.结构玻璃中低频振动模式的统计与特性
Phys Rev Lett. 2016 Jul 15;117(3):035501. doi: 10.1103/PhysRevLett.117.035501. Epub 2016 Jul 12.
4
Micromechanics of nonlinear plastic modes.非线性塑性模式的微观力学
Phys Rev E. 2016 May;93(5):053004. doi: 10.1103/PhysRevE.93.053004. Epub 2016 May 16.
5
Nonlinear plastic modes in disordered solids.无序固体中的非线性塑性模式。
Phys Rev E. 2016 Jan;93(1):011001. doi: 10.1103/PhysRevE.93.011001. Epub 2016 Jan 28.
6
Spatial distribution of thermal energy in equilibrium.平衡状态下热能的空间分布。
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jun;91(6):060103. doi: 10.1103/PhysRevE.91.060103. Epub 2015 Jun 9.
9
Soft spots and their structural signature in a metallic glass.金属玻璃中的软点及其结构特征。
Proc Natl Acad Sci U S A. 2014 Sep 30;111(39):14052-6. doi: 10.1073/pnas.1412095111. Epub 2014 Sep 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验