Suppr超能文献

表面活性剂的痕迹会严重限制超疏水表面的减阻效果。

Traces of surfactants can severely limit the drag reduction of superhydrophobic surfaces.

机构信息

Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, United Kingdom.

School of Mathematics, University of Manchester, Manchester M13 9PL, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2017 Jul 11;114(28):7254-7259. doi: 10.1073/pnas.1702469114. Epub 2017 Jun 27.

Abstract

Superhydrophobic surfaces (SHSs) have the potential to achieve large drag reduction for internal and external flow applications. However, experiments have shown inconsistent results, with many studies reporting significantly reduced performance. Recently, it has been proposed that surfactants, ubiquitous in flow applications, could be responsible by creating adverse Marangoni stresses. However, testing this hypothesis is challenging. Careful experiments with purified water already show large interfacial stresses and, paradoxically, adding surfactants yields barely measurable drag increases. To test the surfactant hypothesis while controlling surfactant concentrations with precision higher than can be achieved experimentally, we perform simulations inclusive of surfactant kinetics. These reveal that surfactant-induced stresses are significant at extremely low concentrations, potentially yielding a no-slip boundary condition on the air-water interface (the "plastron") for surfactant concentrations below typical environmental values. These stresses decrease as the stream-wise distance between plastron stagnation points increases. We perform microchannel experiments with SHSs consisting of stream-wise parallel gratings, which confirm this numerical prediction, while showing near-plastron velocities significantly slower than standard surfactant-free predictions. In addition, we introduce an unsteady test of surfactant effects. When we rapidly remove the driving pressure following a loading phase, a backflow develops at the plastron, which can only be explained by surfactant gradients formed in the loading phase. This demonstrates the significance of surfactants in deteriorating drag reduction and thus the importance of including surfactant stresses in SHS models. Our time-dependent protocol can assess the impact of surfactants in SHS testing and guide future mitigating designs.

摘要

超疏水表面(SHSs)有可能实现内部和外部流动应用的大阻力减少。然而,实验表明结果不一致,许多研究报告称性能显著降低。最近,有人提出,在流动应用中普遍存在的表面活性剂可能会通过产生不利的马兰戈尼应力而负责。然而,测试这一假设具有挑战性。已经用纯水进行了仔细的实验,显示出很大的界面应力,而且矛盾的是,添加表面活性剂只会产生几乎可以测量的阻力增加。为了在控制表面活性剂浓度的同时测试表面活性剂假说,我们进行了包括表面活性剂动力学在内的模拟。这些模拟表明,在极低的浓度下,表面活性剂引起的应力是显著的,这可能会在空气-水界面(“胸甲”)上产生无滑移边界条件,对于低于典型环境值的表面活性剂浓度。这些应力随着胸甲驻点之间的流向距离的增加而减小。我们进行了具有流平行光栅的 SHS 的微通道实验,这些实验证实了这一数值预测,同时显示出接近胸甲的速度明显慢于标准无表面活性剂预测。此外,我们引入了一种表面活性剂效应的非稳态测试。当我们在加载阶段后迅速去除驱动压力时,在胸甲处会产生回流,这只能通过在加载阶段形成的表面活性剂梯度来解释。这表明表面活性剂在降低阻力减少方面的重要性,因此在 SHS 模型中包括表面活性剂应力的重要性。我们的时变协议可以评估表面活性剂在 SHS 测试中的影响,并指导未来的缓解设计。

相似文献

2
A single parameter can predict surfactant impairment of superhydrophobic drag reduction.一个参数可预测超疏水减阻表面活性剂的损伤。
Proc Natl Acad Sci U S A. 2023 Jan 17;120(3):e2211092120. doi: 10.1073/pnas.2211092120. Epub 2023 Jan 12.
6
Bioinspired surfaces for turbulent drag reduction.用于湍流减阻的仿生表面。
Philos Trans A Math Phys Eng Sci. 2016 Aug 6;374(2073). doi: 10.1098/rsta.2016.0189.

引用本文的文献

2
A single parameter can predict surfactant impairment of superhydrophobic drag reduction.一个参数可预测超疏水减阻表面活性剂的损伤。
Proc Natl Acad Sci U S A. 2023 Jan 17;120(3):e2211092120. doi: 10.1073/pnas.2211092120. Epub 2023 Jan 12.
4
Depinning of Multiphase Fluid Using Light and Photo-Responsive Surfactants.利用光和光响应表面活性剂实现多相流体脱钉
ACS Cent Sci. 2022 Feb 23;8(2):235-245. doi: 10.1021/acscentsci.1c01127. Epub 2022 Jan 13.
8
Highly Floatable Superhydrophobic Metallic Assembly for Aquatic Applications.用于水生应用的高漂浮性超疏水金属组件。
ACS Appl Mater Interfaces. 2019 Dec 26;11(51):48512-48517. doi: 10.1021/acsami.9b15540. Epub 2019 Dec 12.

本文引用的文献

1
Role of uncrosslinked chains in droplets dynamics on silicone elastomers.未交联链在硅橡胶液滴动力学中的作用。
Soft Matter. 2017 May 21;13(19):3484-3491. doi: 10.1039/c7sm00447h. Epub 2017 Apr 25.
3
Local Flow Field and Slip Length of Superhydrophobic Surfaces.超疏水表面的局部流场和滑移长度。
Phys Rev Lett. 2016 Apr 1;116(13):134501. doi: 10.1103/PhysRevLett.116.134501. Epub 2016 Mar 30.
5
Control of slippage with tunable bubble mattresses.可调式气泡床垫控制滑移。
Proc Natl Acad Sci U S A. 2013 May 21;110(21):8422-6. doi: 10.1073/pnas.1304403110. Epub 2013 May 6.
6
Biomimetic structures for fluid drag reduction in laminar and turbulent flows.仿生结构在层流和湍流中减少流体阻力。
J Phys Condens Matter. 2010 Jan 27;22(3):035104. doi: 10.1088/0953-8984/22/3/035104. Epub 2009 Dec 21.
7
Structured surfaces for a giant liquid slip.用于实现巨大液体滑移的结构化表面。
Phys Rev Lett. 2008 Aug 8;101(6):064501. doi: 10.1103/PhysRevLett.101.064501. Epub 2008 Aug 5.
9
Drag reduction on a patterned superhydrophobic surface.图案化超疏水表面上的减阻
Phys Rev Lett. 2006 Jul 28;97(4):044504. doi: 10.1103/PhysRevLett.97.044504. Epub 2006 Jul 26.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验