Cortés-Arriagada Diego, Miranda-Rojas Sebastián, Ortega Daniela E, Toro-Labbé Alejandro
Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, P.O. Box 8940577, San Joaquín, Santiago, Chile.
Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Avenida República 275, Santiago, Chile.
Phys Chem Chem Phys. 2017 Jul 21;19(27):17587-17597. doi: 10.1039/c7cp03076b. Epub 2017 Jun 28.
Graphene-based materials have emerged as new potential adsorbents for the adsorption and removal of persistent pollutants, and they could play a key role in the remediation of 1,4-dioxane. In this framework, a quantum chemistry study was carried out to rationalize the sorption properties of oxidized graphene (GO) and Si-doped graphene (SiG) nanosheets for use in 1,4-dioxane removal, taking into account that these adsorbents are experimentally available. Dispersion corrected PBE-D3/SVP calculations show that GO and SiG adsorbs dioxane through non-covalent and covalent interactions, respectively, with adsorption energies of up to ∼0.9 eV, which represents an important improvement with respect to the adsorption onto intrinsic graphene. The adsorption strength was also rationalized in terms of natural bond orbitals, atoms-in-molecules and energy decomposition analyses. In the case of GO, a high content of hydroxyl and carboxyl functional groups enhances the removal efficiency, and they are responsible for the high adsorption stability in aqueous environments and at room temperature (300 K). In addition, explicit/implicit solvent calculations and molecular dynamics trajectories show that the SiG-dioxane interaction is highly stable at 300 K, without pollutant diffusion; besides, the SiG-dioxane interaction is stabilized in the presence of HO molecules. All the analyses suggest that GO and SiG should be considered as new remarkable candidates for sorption technologies related to the removal, control and remediation of 1,4-dioxane, where the sorption efficiency is sorted as SiG > GO ≫ G.
基于石墨烯的材料已成为用于吸附和去除持久性污染物的新型潜在吸附剂,并且它们在1,4 - 二氧六环的修复中可能发挥关键作用。在此框架下,进行了一项量子化学研究,以阐明氧化石墨烯(GO)和硅掺杂石墨烯(SiG)纳米片用于去除1,4 - 二氧六环的吸附特性,考虑到这些吸附剂在实验上是可得的。色散校正的PBE - D3/SVP计算表明,GO和SiG分别通过非共价和共价相互作用吸附二氧六环,吸附能高达约0.9 eV,这相对于在本征石墨烯上的吸附有了重要改进。吸附强度也通过自然键轨道、分子中的原子和能量分解分析进行了合理化解释。对于GO,高含量的羟基和羧基官能团提高了去除效率,并且它们是在水环境和室温(300 K)下具有高吸附稳定性的原因。此外,显式/隐式溶剂计算和分子动力学轨迹表明,SiG - 二氧六环相互作用在300 K时高度稳定,没有污染物扩散;此外,在HO分子存在下,SiG - 二氧六环相互作用得以稳定。所有分析表明,GO和SiG应被视为与1,4 - 二氧六环的去除、控制和修复相关的吸附技术的新的显著候选者,其中吸附效率排序为SiG > GO ≫ G。