Sideroudi Haris, Labiris Georgios, Georgantzoglou Kimon, Ntonti Panagiota, Siganos Charalambos, Kozobolis Vassilios
Department of Ophthalmology, Medical School, Democritus University, Greece.
Eye Institute of Thrace, Alexandroupolis, Greece.
Ophthalmic Physiol Opt. 2017 Jul;37(4):460-466. doi: 10.1111/opo.12386.
To develop an algorithm for the Fourier analysis of posterior corneal videokeratographic data and to evaluate the derived parameters in the diagnosis of Subclinical Keratoconus (SKC) and Keratoconus (KC).
This was a cross-sectional, observational study that took place in the Eye Institute of Thrace, Democritus University, Greece. Eighty eyes formed the KC group, 55 eyes formed the SKC group while 50 normal eyes populated the control group. A self-developed algorithm in visual basic for Microsoft Excel performed a Fourier series harmonic analysis for the posterior corneal sagittal curvature data. The algorithm decomposed the obtained curvatures into a spherical component, regular astigmatism, asymmetry and higher order irregularities for averaged central 4 mm and for each individual ring separately (1, 2, 3 and 4 mm). The obtained values were evaluated for their diagnostic capacity using receiver operating curves (ROC). Logistic regression was attempted for the identification of a combined diagnostic model.
Significant differences were detected in regular astigmatism, asymmetry and higher order irregularities among groups. For the SKC group, the parameters with high diagnostic ability (AUC > 90%) were the higher order irregularities, the asymmetry and the regular astigmatism, mainly in the corneal periphery. Higher predictive accuracy was identified using diagnostic models that combined the asymmetry, regular astigmatism and higher order irregularities in averaged 3and 4 mm area (AUC: 98.4%, Sensitivity: 91.7% and Specificity:100%).
Fourier decomposition of posterior Keratometric data provides parameters with high accuracy in differentiating SKC from normal corneas and should be included in the prompt diagnosis of KC.
开发一种用于分析后表面角膜视频角膜地形图数据的傅里叶分析算法,并评估所推导参数在亚临床圆锥角膜(SKC)和圆锥角膜(KC)诊断中的作用。
这是一项横断面观察性研究,在希腊德谟克利特大学色雷斯眼科学院进行。80只眼睛组成KC组,55只眼睛组成SKC组,50只正常眼睛作为对照组。使用Microsoft Excel的Visual Basic自行开发的算法对后表面角膜矢状曲率数据进行傅里叶级数谐波分析。该算法将获得的曲率分解为球面成分、规则散光、不对称性和高阶不规则性,分别针对平均中央4mm区域以及每个单独的环(1、2、3和4mm)。使用受试者工作曲线(ROC)评估获得的值的诊断能力。尝试进行逻辑回归以确定联合诊断模型。
在各组之间的规则散光、不对称性和高阶不规则性方面检测到显著差异。对于SKC组,具有高诊断能力(AUC>90%)的参数是高阶不规则性、不对称性和规则散光,主要位于角膜周边。使用在平均3mm和4mm区域结合不对称性、规则散光和高阶不规则性的诊断模型可确定更高的预测准确性(AUC:98.4%,敏感性:91.7%,特异性:100%)。
后表面角膜曲率数据的傅里叶分解提供了在区分SKC与正常角膜方面具有高精度的参数,应纳入KC的快速诊断中。