Maile Howard, Li Ji-Peng Olivia, Gore Daniel, Leucci Marcello, Mulholland Padraig, Hau Scott, Szabo Anita, Moghul Ismail, Balaskas Konstantinos, Fujinami Kaoru, Hysi Pirro, Davidson Alice, Liskova Petra, Hardcastle Alison, Tuft Stephen, Pontikos Nikolas
UCL Institute of Ophthalmology, University College London, London, United Kingdom.
Moorfields Eye Hospital, London, United Kingdom.
JMIR Med Inform. 2021 Dec 13;9(12):e27363. doi: 10.2196/27363.
Keratoconus is a disorder characterized by progressive thinning and distortion of the cornea. If detected at an early stage, corneal collagen cross-linking can prevent disease progression and further visual loss. Although advanced forms are easily detected, reliable identification of subclinical disease can be problematic. Several different machine learning algorithms have been used to improve the detection of subclinical keratoconus based on the analysis of multiple types of clinical measures, such as corneal imaging, aberrometry, or biomechanical measurements.
The aim of this study is to survey and critically evaluate the literature on the algorithmic detection of subclinical keratoconus and equivalent definitions.
For this systematic review, we performed a structured search of the following databases: MEDLINE, Embase, and Web of Science and Cochrane Library from January 1, 2010, to October 31, 2020. We included all full-text studies that have used algorithms for the detection of subclinical keratoconus and excluded studies that did not perform validation. This systematic review followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) recommendations.
We compared the measured parameters and the design of the machine learning algorithms reported in 26 papers that met the inclusion criteria. All salient information required for detailed comparison, including diagnostic criteria, demographic data, sample size, acquisition system, validation details, parameter inputs, machine learning algorithm, and key results are reported in this study.
Machine learning has the potential to improve the detection of subclinical keratoconus or early keratoconus in routine ophthalmic practice. Currently, there is no consensus regarding the corneal parameters that should be included for assessment and the optimal design for the machine learning algorithm. We have identified avenues for further research to improve early detection and stratification of patients for early treatment to prevent disease progression.
圆锥角膜是一种以角膜进行性变薄和变形为特征的疾病。如果在早期阶段被检测到,角膜胶原交联可以阻止疾病进展和进一步的视力丧失。虽然晚期形式很容易被检测到,但亚临床疾病的可靠识别可能存在问题。基于多种类型的临床测量分析,如角膜成像、像差测量或生物力学测量,已经使用了几种不同的机器学习算法来改善亚临床圆锥角膜的检测。
本研究的目的是调查和批判性地评估关于亚临床圆锥角膜算法检测及等效定义的文献。
对于这项系统评价,我们对以下数据库进行了结构化搜索:2010年1月1日至2020年10月31日期间的MEDLINE、Embase、科学网和考克兰图书馆。我们纳入了所有使用算法检测亚临床圆锥角膜的全文研究,并排除了未进行验证的研究。本系统评价遵循PRISMA(系统评价和Meta分析的首选报告项目)建议。
我们比较了26篇符合纳入标准的论文中报告的机器学习算法的测量参数和设计。本研究报告了详细比较所需的所有重要信息,包括诊断标准、人口统计学数据、样本量、采集系统、验证细节、参数输入、机器学习算法和关键结果。
机器学习有潜力在常规眼科实践中改善亚临床圆锥角膜或早期圆锥角膜的检测。目前,关于评估应包括的角膜参数以及机器学习算法的最佳设计尚无共识。我们已经确定了进一步研究的途径,以改善早期检测和对患者进行分层以便早期治疗,从而预防疾病进展。