Suppr超能文献

将群体感应映射到神经网络上,以理解异质微生物群落中的集体决策。

Mapping quorum sensing onto neural networks to understand collective decision making in heterogeneous microbial communities.

作者信息

Yusufaly Tahir I, Boedicker James Q

机构信息

Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, United States of America.

出版信息

Phys Biol. 2017 Jul 19;14(4):046002. doi: 10.1088/1478-3975/aa7c1e.

Abstract

Microbial communities frequently communicate via quorum sensing (QS), where cells produce, secrete, and respond to a threshold level of an autoinducer (AI) molecule, thereby modulating gene expression. However, the biology of QS remains incompletely understood in heterogeneous communities, where variant bacterial strains possess distinct QS systems that produce chemically unique AIs. AI molecules bind to 'cognate' receptors, but also to 'non-cognate' receptors found in other strains, resulting in inter-strain crosstalk. Understanding these interactions is a prerequisite for deciphering the consequences of crosstalk in real ecosystems, where multiple AIs are regularly present in the same environment. As a step towards this goal, we map crosstalk in a heterogeneous community of variant QS strains onto an artificial neural network model. This formulation allows us to systematically analyze how crosstalk regulates the community's capacity for flexible decision making, as quantified by the Boltzmann entropy of all QS gene expression states of the system. In a mean-field limit of complete cross-inhibition between variant strains, the model is exactly solvable, allowing for an analytical formula for the number of variants that maximize capacity as a function of signal kinetics and activation parameters. An analysis of previous experimental results on the Staphylococcus aureus two-component Agr system indicates that the observed combination of variant numbers, gene expression rates and threshold concentrations lies near this critical regime of parameter space where capacity peaks. The results are suggestive of a potential evolutionary driving force for diversification in certain QS systems.

摘要

微生物群落经常通过群体感应(QS)进行交流,即细胞产生、分泌并对自诱导物(AI)分子的阈值水平做出反应,从而调节基因表达。然而,在异质群落中,QS的生物学机制仍未完全被理解,在这种群落中,不同的细菌菌株拥有产生化学性质独特的AI的不同QS系统。AI分子不仅会与“同源”受体结合,还会与其他菌株中发现的“非同源”受体结合,从而导致菌株间的串扰。理解这些相互作用是解读真实生态系统中串扰后果的先决条件,在这些生态系统中,多种AI经常存在于同一环境中。作为朝着这一目标迈出的一步,我们将不同QS菌株的异质群落中的串扰映射到一个人工神经网络模型上。这种公式化方法使我们能够系统地分析串扰如何调节群落的灵活决策能力,这可以通过系统所有QS基因表达状态的玻尔兹曼熵来量化。在不同菌株之间完全交叉抑制的平均场极限情况下,该模型是完全可解的,从而可以得到一个解析公式,用于计算作为信号动力学和激活参数函数的使能力最大化的变体数量。对金黄色葡萄球菌双组分Agr系统先前实验结果的分析表明,观察到的变体数量、基因表达率和阈值浓度的组合接近参数空间的这个临界区域,在该区域能力达到峰值。这些结果暗示了某些QS系统中多样化的潜在进化驱动力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验