Suppr超能文献

混合人群中基于基因型和血统的全基因组关联研究。

Joint genotype- and ancestry-based genome-wide association studies in admixed populations.

作者信息

Szulc Piotr, Bogdan Malgorzata, Frommlet Florian, Tang Hua

机构信息

Faculty of Mathematics, Wroclaw University of Technology, Wroclaw, Poland.

Faculty of Mathematics and Computer Science, University of Wroclaw, Wroclaw, Poland.

出版信息

Genet Epidemiol. 2017 Sep;41(6):555-566. doi: 10.1002/gepi.22056. Epub 2017 Jun 28.

Abstract

In genome-wide association studies (GWAS) genetic loci that influence complex traits are localized by inspecting associations between genotypes of genetic markers and the values of the trait of interest. On the other hand, admixture mapping, which is performed in case of populations consisting of a recent mix of two ancestral groups, relies on the ancestry information at each locus (locus-specific ancestry). Recently it has been proposed to jointly model genotype and locus-specific ancestry within the framework of single marker tests. Here, we extend this approach for population-based GWAS in the direction of multimarker models. A modified version of the Bayesian information criterion is developed for building a multilocus model that accounts for the differential correlation structure due to linkage disequilibrium (LD) and admixture LD. Simulation studies and a real data example illustrate the advantages of this new approach compared to single-marker analysis or modern model selection strategies based on separately analyzing genotype and ancestry data, as well as to single-marker analysis combining genotypic and ancestry information. Depending on the signal strength, our procedure automatically chooses whether genotypic or locus-specific ancestry markers are added to the model. This results in a good compromise between the power to detect causal mutations and the precision of their localization. The proposed method has been implemented in R and is available at http://www.math.uni.wroc.pl/~mbogdan/admixtures/.

摘要

在全基因组关联研究(GWAS)中,通过检查遗传标记的基因型与感兴趣性状的值之间的关联来定位影响复杂性状的基因座。另一方面,混合映射是在由两个祖先群体近期混合而成的人群中进行的,它依赖于每个基因座的祖先信息(基因座特异性祖先)。最近,有人提议在单标记测试的框架内对基因型和基因座特异性祖先进行联合建模。在此,我们将这种方法扩展到基于群体的GWAS的多标记模型方向。开发了一种贝叶斯信息准则的修改版本,用于构建一个多位点模型,该模型考虑了由于连锁不平衡(LD)和混合LD导致的差异相关结构。模拟研究和一个实际数据示例说明了这种新方法相对于单标记分析或基于分别分析基因型和祖先数据的现代模型选择策略,以及结合基因型和祖先信息的单标记分析的优势。根据信号强度,我们的程序会自动选择是将基因型标记还是基因座特异性祖先标记添加到模型中。这在检测因果突变的能力和其定位的精度之间实现了良好的折衷。所提出的方法已在R中实现,可在http://www.math.uni.wroc.pl/~mbogdan/admixtures/获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验