Delgado Jorge A, Benkirane Olivia, Claver Carmen, Curulla-Ferré Daniel, Godard Cyril
Centre Tecnològic de la Química, Marcel lí Domingo s/n, Campus Sescelades, 43007 Tarragona, Spain.
Total Research and Technology Feluy, B-7181 Seneffe, Belgium.
Dalton Trans. 2017 Sep 26;46(37):12381-12403. doi: 10.1039/c7dt01607g.
In the last decade, the semi-hydrogenation of alkynes has experienced significant advances in terms of fine control of alkene selectivity and prevention of the over-hydrogenation reaction. Such advances have been possible to a large extent through the progress in colloidal methods for the preparation of metallic nanoparticles. The present review describes the contributions in the field of the selective hydrogenation of alkynes involving the utilization of colloidal methodologies. These approaches permit the fine modulation of several parameters affecting the catalytic performance of the active phase such as the particle size, the bulk and the surface structure and composition. For the transformation of liquid substrates, the nature of the stabilizers, the reducing agents and the metal precursors employed for the synthesis of the catalysts can be tuned to enhance the alkene selectivity. In contrast, in catalytic transformations of gaseous substrates, the presence of adsorbed species at the metal surface usually gives detrimental results while the interplay between the support and the active phase appears to be a more convincing alternative for catalyst tuning.
在过去十年中,炔烃的半氢化在烯烃选择性的精细控制和防止过度氢化反应方面取得了显著进展。这些进展在很大程度上得益于制备金属纳米颗粒的胶体方法的进步。本综述描述了在炔烃选择性氢化领域中涉及使用胶体方法的贡献。这些方法允许对影响活性相催化性能的几个参数进行精细调节,例如粒径、体相和表面结构及组成。对于液体底物的转化,可以调整用于合成催化剂的稳定剂、还原剂和金属前驱体的性质,以提高烯烃选择性。相比之下,在气态底物的催化转化中,金属表面吸附物种的存在通常会产生不利结果,而载体与活性相之间的相互作用似乎是调节催化剂更有说服力的选择。