FORTH, Institute of Electronic Structure & Laser , 711 10 Heraklion, Greece.
Department of Materials Science & Technology, University of Crete , 741 00 Heraklion, Greece.
ACS Nano. 2017 Jul 25;11(7):6755-6763. doi: 10.1021/acsnano.7b01359. Epub 2017 Jul 3.
Glasses formed from nano- and microparticles form a fascinating testing ground to explore and understand the origins of vitrification. For atomic and molecular glasses, a wide range of fragilities have been observed; in colloidal systems, these effects can be emulated by adjusting the particle softness. The colloidal glass transition can range from a superexponential, fragile increase in viscosity with increasing density for hard spheres to a strong, Arrhenius-like transition for compressible particles. However, the microscopic origin of fragility and strength remains elusive, both in the colloidal and in the atomic domains. Here, we propose a simple model that explains fragility changes in colloidal glasses by describing the volume regulation of compressible colloids in order to maintain osmotic equilibrium. Our simple model provides a microscopic explanation for fragility, and we show that it can describe experimental data for a variety of soft colloidal systems, ranging from microgels to star polymers and proteins. Our results highlight that the elastic energy per particle acts as an effective fragility order parameter, leading to a universal description of the colloidal glass transition.
由纳米和微米颗粒形成的玻璃态物质为探索和理解玻璃化转变的起源提供了一个引人入胜的试验场。对于原子和分子玻璃,已经观察到了广泛的脆性;在胶体体系中,可以通过调整颗粒的柔软度来模拟这些效应。胶体玻璃转变可以从硬球的超指数、粘性随密度增加而脆弱增加,到可压缩颗粒的强阿累尼乌斯样转变。然而,无论是在胶体还是原子领域,脆性和强度的微观起源仍然难以捉摸。在这里,我们提出了一个简单的模型,通过描述可压缩胶体的体积调节来维持渗透平衡,从而解释胶体玻璃的脆性变化。我们的简单模型为脆性提供了微观解释,我们表明它可以描述各种软胶体体系的实验数据,范围从微凝胶到星形聚合物和蛋白质。我们的结果强调了每个粒子的弹性能量作为有效脆性序参量的作用,从而对胶体玻璃转变进行了普遍描述。