Zeidler Julianna D, Fernandes-Siqueira Lorena O, Carvalho Ana S, Cararo-Lopes Eduardo, Dias Matheus H, Ketzer Luisa A, Galina Antonio, Da Poian Andrea T
From the Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil,.
From the Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil.
J Biol Chem. 2017 Aug 25;292(34):14176-14187. doi: 10.1074/jbc.M117.786582. Epub 2017 Jun 29.
Mitochondrial oxidation of nutrients is tightly regulated in response to the cellular environment and changes in energy demands. studies evaluating the mitochondrial capacity of oxidizing different substrates are important for understanding metabolic shifts in physiological adaptations and pathological conditions, but may be influenced by the nutrients present in the culture medium or by the utilization of endogenous stores. One such influence is exemplified by the Crabtree effect (the glucose-mediated inhibition of mitochondrial respiration) as most experiments are performed in glucose-containing media. Here, using high-resolution respirometry, we evaluated the oxidation of endogenous or exogenous substrates by cell lines harboring different metabolic profiles. We found that a 1-h deprivation of the main energetic nutrients is an appropriate strategy to abolish interference of endogenous or undesirable exogenous substrates with the cellular capacity of oxidizing specific substrates, namely glutamine, pyruvate, glucose, or palmitate, in mitochondria. This approach primed mitochondria to immediately increase their oxygen consumption after the addition of the exogenous nutrients. All starved cells could oxidize exogenous glutamine, whereas the capacity for oxidizing palmitate was limited to human hepatocarcinoma Huh7 cells and to C2C12 mouse myoblasts that differentiated into myotubes. In the presence of exogenous glucose, starvation decreased the Crabtree effect in Huh7 and C2C12 cells and abrogated it in mouse neuroblastoma N2A cells. Interestingly, the fact that the Crabtree effect was observed only for mitochondrial basal respiration but not for the maximum respiratory capacity suggests it is not caused by a direct effect on the electron transport system.
线粒体对营养物质的氧化作用会根据细胞环境和能量需求的变化受到严格调控。评估线粒体氧化不同底物能力的研究对于理解生理适应和病理状况下的代谢转变很重要,但可能会受到培养基中存在的营养物质或内源性储备利用情况的影响。这种影响的一个例子是克奈特效应(葡萄糖介导的线粒体呼吸抑制),因为大多数实验是在含葡萄糖的培养基中进行的。在此,我们使用高分辨率呼吸测定法,评估了具有不同代谢特征的细胞系对内源性或外源性底物的氧化作用。我们发现,剥夺主要能量营养物质1小时是一种合适的策略,可以消除内源性或不良外源性底物对线粒体中氧化特定底物(即谷氨酰胺、丙酮酸、葡萄糖或棕榈酸)的细胞能力的干扰。这种方法使线粒体在添加外源性营养物质后能够立即增加其氧气消耗。所有饥饿的细胞都能氧化外源性谷氨酰胺,而氧化棕榈酸的能力仅限于人肝癌Huh7细胞和分化为肌管的C2C12小鼠成肌细胞。在存在外源性葡萄糖的情况下,饥饿降低了Huh7和C2C12细胞中的克奈特效应,并消除了小鼠神经母细胞瘤N2A细胞中的该效应。有趣的是,克奈特效应仅在线粒体基础呼吸中观察到,而在最大呼吸能力中未观察到,这表明它不是由对电子传递系统的直接作用引起的。