School of Communication and Information Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China.
Fang Lu Mesoscopic Optics and Quantum Electronics Laboratory, University of California, Los Angeles, CA, 90095, USA.
Sci Rep. 2017 Jun 29;7(1):4383. doi: 10.1038/s41598-017-04882-4.
For the sensitive high-resolution force- and field-sensing applications, the large-mass microelectromechanical system (MEMS) and optomechanical cavity have been proposed to realize the sub-aN/Hz resolution levels. In view of the optomechanical cavity-based force- and field-sensors, the optomechanical coupling is the key parameter for achieving high sensitivity and resolution. Here we demonstrate a chip-scale optomechanical cavity with large mass which operates at ≈77.7 kHz fundamental mode and intrinsically exhibiting large optomechanical coupling of 44 GHz/nm or more, for both optical resonance modes. The mechanical stiffening range of ≈58 kHz and a more than 100-order harmonics are obtained, with which the free-running frequency instability is lower than 10 at 100 ms integration time. Such results can be applied to further improve the sensing performance of the optomechanical inspired chip-scale sensors.
对于敏感的高分辨率力和场感应应用,已经提出了大质量微机电系统 (MEMS) 和光机械腔,以实现亚纳牛顿/赫兹的分辨率水平。在基于光机械腔的力和场传感器中,光机械耦合是实现高灵敏度和分辨率的关键参数。在这里,我们展示了一种具有大质量的芯片级光机械腔,其工作在约 77.7 kHz 的基频模式下,固有地表现出大于 44 GHz/nm 的大光机械耦合,适用于两种光学共振模式。获得了约 58 kHz 的机械加固范围和超过 100 阶的谐频,在 100 毫秒积分时间内,自由运行频率不稳定度低于 10。这些结果可应用于进一步提高基于光机械的芯片级传感器的传感性能。