NILU - Norwegian Institute for Air Research, PO Box 100, Kjeller 2027, Norway.
NILU - Norwegian Institute for Air Research, PO Box 100, Kjeller 2027, Norway.
Environ Int. 2017 Sep;106:234-247. doi: 10.1016/j.envint.2017.05.005. Epub 2017 Jun 28.
The recent emergence of low-cost microsensors measuring various air pollutants has significant potential for carrying out high-resolution mapping of air quality in the urban environment. However, the data obtained by such sensors are generally less reliable than that from standard equipment and they are subject to significant data gaps in both space and time. In order to overcome this issue, we present here a data fusion method based on geostatistics that allows for merging observations of air quality from a network of low-cost sensors with spatial information from an urban-scale air quality model. The performance of the methodology is evaluated for nitrogen dioxide in Oslo, Norway, using both simulated datasets and real-world measurements from a low-cost sensor network for January 2016. The results indicate that the method is capable of producing realistic hourly concentration fields of urban nitrogen dioxide that inherit the spatial patterns from the model and adjust the prior values using the information from the sensor network. The accuracy of the data fusion method is dependent on various factors including the total number of observations, their spatial distribution, their uncertainty (both in terms of systematic biases and random errors), as well as the ability of the model to provide realistic spatial patterns of urban air pollution. A validation against official data from air quality monitoring stations equipped with reference instrumentation indicates that the data fusion method is capable of reproducing city-wide averaged official values with an R of 0.89 and a root mean squared error of 14.3 μg m. It is further capable of reproducing the typical daily cycles of nitrogen dioxide. Overall, the results indicate that the method provides a robust way of extracting useful information from uncertain sensor data using only a time-invariant model dataset and the knowledge contained within an entire sensor network.
最近出现的低成本微传感器可以测量各种空气污染物,对于开展城市环境空气质量的高分辨率制图具有重要意义。然而,此类传感器获得的数据通常不如标准设备可靠,并且在空间和时间上都存在明显的数据差距。为了解决这个问题,我们在这里提出了一种基于地统计学的数据融合方法,该方法允许将低成本传感器网络中的空气质量观测值与城市尺度空气质量模型的空间信息进行合并。我们使用挪威奥斯陆的二氧化氮模拟数据集和低成本传感器网络的实际测量数据,对该方法的性能进行了评估,时间范围为 2016 年 1 月。结果表明,该方法能够生成具有空间模式的城市二氧化氮实时浓度场,这些模式继承了模型的空间模式,并使用传感器网络的信息调整了先验值。数据融合方法的准确性取决于多种因素,包括观测总数、其空间分布、其不确定性(包括系统偏差和随机误差),以及模型提供真实城市空气污染空间模式的能力。与配备参考仪器的空气质量监测站的官方数据进行验证表明,数据融合方法能够以 0.89 的 R 值和 14.3μg/m 的均方根误差再现全市平均的官方值。它还能够再现二氧化氮的典型日循环。总的来说,结果表明,该方法提供了一种从仅使用不变模型数据集和整个传感器网络中包含的知识的不确定传感器数据中提取有用信息的可靠方法。