Barrdahl Myrto, Rudolph Anja, Hopper John L, Southey Melissa C, Broeks Annegien, Fasching Peter A, Beckmann Matthias W, Gago-Dominguez Manuela, Castelao J Esteban, Guénel Pascal, Truong Thérèse, Bojesen Stig E, Gapstur Susan M, Gaudet Mia M, Brenner Hermann, Arndt Volker, Brauch Hiltrud, Hamann Ute, Mannermaa Arto, Lambrechts Diether, Jongen Lynn, Flesch-Janys Dieter, Thoene Kathrin, Couch Fergus J, Giles Graham G, Simard Jacques, Goldberg Mark S, Figueroa Jonine, Michailidou Kyriaki, Bolla Manjeet K, Dennis Joe, Wang Qin, Eilber Ursula, Behrens Sabine, Czene Kamila, Hall Per, Cox Angela, Cross Simon, Swerdlow Anthony, Schoemaker Minouk J, Dunning Alison M, Kaaks Rudolf, Pharoah Paul D P, Schmidt Marjanka, Garcia-Closas Montserrat, Easton Douglas F, Milne Roger L, Chang-Claude Jenny
Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia.
Int J Cancer. 2017 Nov 1;141(9):1830-1840. doi: 10.1002/ijc.30859. Epub 2017 Aug 11.
Investigating the most likely causal variants identified by fine-mapping analyses may improve the power to detect gene-environment interactions. We assessed the interplay between 70 single nucleotide polymorphisms identified by genetic fine-scale mapping of susceptibility loci and 11 epidemiological breast cancer risk factors in relation to breast cancer. Analyses were conducted on up to 58,573 subjects (26,968 cases and 31,605 controls) from the Breast Cancer Association Consortium, in one of the largest studies of its kind. Analyses were carried out separately for estrogen receptor (ER) positive (ER+) and ER negative (ER-) disease. The Bayesian False Discovery Probability (BFDP) was computed to assess the noteworthiness of the results. Four potential gene-environment interactions were identified as noteworthy (BFDP < 0.80) when assuming a true prior interaction probability of 0.01. The strongest interaction result in relation to overall breast cancer risk was found between CFLAR-rs7558475 and current smoking (OR = 0.77, 95% CI: 0.67-0.88, p = 1.8 × 10 ). The interaction with the strongest statistical evidence was found between 5q14-rs7707921 and alcohol consumption (OR =1.36, 95% CI: 1.16-1.59, p = 1.9 × 10 ) in relation to ER- disease risk. The remaining two gene-environment interactions were also identified in relation to ER- breast cancer risk and were found between 3p21-rs6796502 and age at menarche (OR = 1.26, 95% CI: 1.12-1.43, p =1.8 × 10 ) and between 8q23-rs13267382 and age at first full-term pregnancy (OR = 0.89, 95% CI: 0.83-0.95, p = 5.2 × 10 ). While these results do not suggest any strong gene-environment interactions, our results may still be useful to inform experimental studies. These may in turn, shed light on the potential interactions observed.
研究通过精细定位分析确定的最可能的因果变异,可能会提高检测基因-环境相互作用的能力。我们评估了通过对易感基因座进行遗传精细定位确定的70个单核苷酸多态性与11种乳腺癌流行病学危险因素之间关于乳腺癌的相互作用。在同类最大规模的研究之一中,对来自乳腺癌协会联盟的多达58573名受试者(26968例病例和31605名对照)进行了分析。分别对雌激素受体(ER)阳性(ER+)和ER阴性(ER-)疾病进行了分析。计算了贝叶斯错误发现概率(BFDP)以评估结果的显著性。当假设真实的先验相互作用概率为0.01时,确定了四个潜在的基因-环境相互作用具有显著性(BFDP < 0.80)。在CFLAR-rs7558475与当前吸烟之间发现了与总体乳腺癌风险相关的最强相互作用结果(OR = 0.77,95%可信区间:0.67 - 0.88,p = 1.8 × 10)。在5q14-rs7707921与饮酒之间发现了与ER-疾病风险相关的具有最强统计证据的相互作用(OR = 1.36,95%可信区间:1.16 - 1.59,p = 1.9 × 10)。其余两个基因-环境相互作用也与ER-乳腺癌风险相关,分别在3p21-rs6796502与初潮年龄之间(OR = 1.26,95%可信区间:1.12 - 1.43,p = 1.8 × 10)以及8q23-rs13267382与首次足月妊娠年龄之间(OR = 0.89,95%可信区间:0.83 - 0.95,p = 5.2 × 10)。虽然这些结果并未表明存在任何强烈的基因-环境相互作用,但我们的结果可能仍有助于为实验研究提供信息。反过来,这些研究可能会揭示所观察到的潜在相互作用。