Suppr超能文献

用于超高面电容超级电容器的理想电极材料:三维表面微孔石墨烯。

An Ideal Electrode Material, 3D Surface-Microporous Graphene for Supercapacitors with Ultrahigh Areal Capacitance.

机构信息

Department of Materials Science and Engineering, Michigan Technological University , 1400 Townsend Drive, Houghton, Michigan 49931-1295, United States.

Center for Functional Nanomaterials, Brookhaven National Laboratory , Upton, New York 11973, United States.

出版信息

ACS Appl Mater Interfaces. 2017 Jul 26;9(29):24655-24661. doi: 10.1021/acsami.7b07381. Epub 2017 Jul 11.

Abstract

The efficient charge accumulation of an ideal supercapacitor electrode requires abundant micropores and its fast electrolyte-ions transport prefers meso/macropores. However, current electrode materials cannot meet both requirements, resulting in poor performance. Herein, we creatively constructed three-dimensional cabbage-coral-like graphene as an ideal electrode material, in which meso/macro channels are formed by graphene walls and rich micropores are incorporated in the surface layer of the graphene walls. The unique 3D graphene material can achieve a high gravimetric capacitance of 200 F/g with aqueous electrolyte, 3 times larger than that of commercially used activated carbon (70.8 F/g). Furthermore, it can reach an ultrahigh areal capacitance of 1.28 F/cm and excellent rate capability (83.5% from 0.5 to 10 A/g) as well as high cycling stability (86.2% retention after 5000 cycles). The excellent electric double-layer performance of the 3D graphene electrode can be attributed to the fast electrolyte ion transport in the meso/macro channels and the rapid and reversible charge adsorption with negligible transport distance in the surface micropores.

摘要

理想超级电容器电极的高效电荷积累需要丰富的微孔,而其快速电解质离子传输则偏爱介孔/大孔。然而,目前的电极材料无法同时满足这两个要求,导致性能不佳。在此,我们创造性地构建了三维白菜珊瑚状石墨烯作为理想的电极材料,其中介孔/大孔由石墨烯壁形成,而丰富的微孔则掺入石墨烯壁的表面层中。独特的 3D 石墨烯材料在水系电解液中可实现高达 200 F/g 的比重量电容,是商用活性炭(70.8 F/g)的 3 倍。此外,它还可达到超高的面电容 1.28 F/cm 和出色的倍率性能(从 0.5 到 10 A/g 时的 83.5%)以及高循环稳定性(5000 次循环后保留 86.2%)。3D 石墨烯电极优异的双电层性能归因于介孔/大孔中电解质离子的快速传输以及表面微孔中快速可逆的电荷吸附,且传输距离可以忽略不计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验