Suppr超能文献

用于钙钛矿太阳能电池的分子空穴传输材料的合理设计:直接与倒置器件结构。

Rational Design of Molecular Hole-Transporting Materials for Perovskite Solar Cells: Direct versus Inverted Device Configurations.

机构信息

DICATECh - Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica, Politecnico di Bari, Via Orabona, 4, I-70125 Bari, Italy.

CNR-NANOTEC, Istituto di Nanotecnologia, c/o Campus Ecotekne, Università del Salento , Via Monteroni, 73100 Lecce, Italy.

出版信息

ACS Appl Mater Interfaces. 2017 Jul 26;9(29):24778-24787. doi: 10.1021/acsami.7b05484. Epub 2017 Jul 13.

Abstract

Due to a still limited understanding of the reasons making 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (Spiro-OMeTAD) the state-of-the-art hole-transporting material (HTM) for emerging photovoltaic applications, the molecular tailoring of organic components for perovskite solar cells (PSCs) lacks in solid design criteria. Charge delocalization in radical cationic states can undoubtedly be considered as one of the essential prerequisites for an HTM, but this aspect has been investigated to a relatively minor extent. In marked contrast with the 3-D structure of Spiro-OMeTAD, truxene-based HTMs Trux1 and Trux2 have been employed for the first time in PSCs fabricated with a direct (n-i-p) or inverted (p-i-n) architecture, exhibiting a peculiar behavior with respect to the referential HTM. Notwithstanding the efficient hole extraction from the perovskite layer exhibited by Trux1 and Trux2 in direct configuration devices, their photovoltaic performances were detrimentally affected by their poor hole transport. Conversely, an outstanding improvement of the photovoltaic performances in dopant-free inverted configuration devices compared to Spiro-OMeTAD was recorded, ascribable to the use of thinner HTM layers. The rationalization of the photovoltaic performances exhibited by different configuration devices discussed in this paper can provide new and unexpected prospects for engineering the interface between the active layer of perovskite-based solar cells and the hole transporters.

摘要

由于对 2,2',7,7'-四(N,N-二对甲氧基苯基)胺)-9,9'-螺二芴 (Spiro-OMeTAD) 成为新兴光伏应用中最先进的空穴传输材料 (HTM) 的原因仍缺乏深入了解,用于钙钛矿太阳能电池 (PSC) 的有机组件的分子剪裁在固态设计标准方面存在不足。在自由基阳离子态中的电荷离域无疑可以被认为是 HTM 的一个基本前提,但这方面的研究相对较少。与 Spiro-OMeTAD 的 3D 结构形成鲜明对比的是,基于三苯并芴的 HTM Trux1 和 Trux2 首次被用于采用直接 (n-i-p) 或倒置 (p-i-n) 结构的 PSCs 中,与参考 HTM 相比表现出特殊的行为。尽管 Trux1 和 Trux2 在直接构型器件中从钙钛矿层中表现出有效的空穴提取,但它们的光伏性能因空穴传输性能差而受到不利影响。相反,与 Spiro-OMeTAD 相比,在无掺杂倒置构型器件中记录到了光伏性能的显著提高,这归因于使用更薄的 HTM 层。本文讨论的不同构型器件的光伏性能的合理化可以为钙钛矿基太阳能电池的活性层与空穴传输体之间的界面工程提供新的、意想不到的前景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验