Suppr超能文献

一种用于构建可靠的加权蛋白质相互作用网络的 Type-2 模糊数据融合方法及其在蛋白质复合物检测中的应用。

A Type-2 fuzzy data fusion approach for building reliable weighted protein interaction networks with application in protein complex detection.

机构信息

Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran.

Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.

出版信息

Comput Biol Med. 2017 Sep 1;88:18-31. doi: 10.1016/j.compbiomed.2017.06.019. Epub 2017 Jun 23.

Abstract

Detecting the protein complexes is an important task in analyzing the protein interaction networks. Although many algorithms predict protein complexes in different ways, surveys on the interaction networks indicate that about 50% of detected interactions are false positives. Consequently, the accuracy of existing methods needs to be improved. In this paper we propose a novel algorithm to detect the protein complexes in 'noisy' protein interaction data. First, we integrate several biological data sources to determine the reliability of each interaction and determine more accurate weights for the interactions. A data fusion component is used for this step, based on the interval type-2 fuzzy voter that provides an efficient combination of the information sources. This fusion component detects the errors and diminishes their effect on the detection protein complexes. So in the first step, the reliability scores have been assigned for every interaction in the network. In the second step, we have proposed a general protein complex detection algorithm by exploiting and adopting the strong points of other algorithms and existing hypotheses regarding real complexes. Finally, the proposed method has been applied for the yeast interaction datasets for predicting the interactions. The results show that our framework has a better performance regarding precision and F-measure than the existing approaches.

摘要

检测蛋白质复合物是分析蛋白质相互作用网络的一项重要任务。尽管有许多算法以不同的方式预测蛋白质复合物,但对相互作用网络的调查表明,约 50%的检测到的相互作用是假阳性的。因此,现有方法的准确性需要提高。在本文中,我们提出了一种新的算法来检测“嘈杂”蛋白质相互作用数据中的蛋白质复合物。首先,我们整合了几个生物数据源来确定每个相互作用的可靠性,并为相互作用确定更准确的权重。基于区间型 2 模糊投票器的一种数据融合组件用于此步骤,该组件提供了信息源的有效组合。此融合组件可检测错误并减少其对检测蛋白质复合物的影响。因此,在第一步中,为网络中的每个相互作用分配了可靠性得分。在第二步中,我们通过利用和采用其他算法的优点以及关于真实复合物的现有假设,提出了一种通用的蛋白质复合物检测算法。最后,将所提出的方法应用于酵母相互作用数据集,以预测相互作用。结果表明,我们的框架在精度和 F 度量方面的性能优于现有方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验