Suppr超能文献

鸟枪法和靶向血浆蛋白质组学预测非小细胞肺癌的预后

Shotgun and Targeted Plasma Proteomics to Predict Prognosis of Non-Small Cell Lung Cancer.

作者信息

Li Qing-Run, Liu Yan-Sheng, Zeng Rong

机构信息

Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.

出版信息

Methods Mol Biol. 2017;1619:385-394. doi: 10.1007/978-1-4939-7057-5_26.

Abstract

Lung cancer is the leading cause of cancer deaths worldwide. Clinically, the treatment of non-small cell lung cancer (NSCLC) can be improved by the early detection and risk screening among population. To meet this need, here we describe in detail a shotgun following the targeted proteomics workflow that we previously applied for human plasma analysis, which involves (1) the application of extensive peptide-level fractionation coupled with label-free quantitative proteomics for the discovery of plasma biomarker candidates for lung cancer and (2) the usage of the multiple reaction monitoring (MRM) assays for the follow-up validations in the verification phase. The workflow features simplicity, low cost, high transferability, high robustness, and flexibility with specific instrumental settings.

摘要

肺癌是全球癌症死亡的主要原因。临床上,通过人群中的早期检测和风险筛查可以改善非小细胞肺癌(NSCLC)的治疗。为满足这一需求,在此我们详细描述一种遵循靶向蛋白质组学工作流程的鸟枪法,该流程我们之前已应用于人体血浆分析,其包括(1)应用广泛的肽水平分级分离结合无标记定量蛋白质组学来发现肺癌血浆生物标志物候选物,以及(2)在验证阶段使用多反应监测(MRM)分析进行后续验证。该工作流程具有简单、低成本、高转移性、高稳健性以及在特定仪器设置下的灵活性等特点。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验