Suppr超能文献

通过聚合物共混物直接制备高导电性激光诱导石墨烯纳米复合材料

Direct Creation of Highly Conductive Laser-Induced Graphene Nanocomposites from Polymer Blends.

作者信息

Yazdi Alireza Zehtab, Navas Ivonne Otero, Abouelmagd Ahmed, Sundararaj Uttandaraman

机构信息

Polymer Processing Group, Department of Chemical and Petroleum Engineering, University of Calgary 2500, University Dr, NW, Calgary, Alberta, T2N1N4, Canada.

出版信息

Macromol Rapid Commun. 2017 Sep;38(17). doi: 10.1002/marc.201700176. Epub 2017 Jul 4.

Abstract

The current state-of-the-art mixing strategies of nanoparticles with insulating polymeric components have only partially utilized the unique electrical conductivity of graphene in nanocomposite systems. Herein, this paper reports a nonmixing method of direct creation of polymer/graphene nanocomposites from polymer blends via laser irradiation. Polycarbonate-laser-induced graphene (PC-LIG) nanocomposite is produced from a PC/polyetherimide (PC/PEI) blend after exposure to commercially available laser scribing with a power of ≈6 W and a speed of ≈2 cm s . Extremely high electrical conductivities are obtained for the PC-LIG nanocomposites, ranging from 26 to 400 S m , depending on the vol% of the starting PEI phase in the blend. To the authors' knowledge, these conductivity values are at least one order of magnitude higher than the values that are previously reported for conductive polymer/graphene nanocomposites prepared via mixing strategies. The comprehensive microscopy and spectroscopy characterizations reveal a complete graphitization of the PEI phase with columnar microstructure embedded in the PC phase.

摘要

目前,纳米颗粒与绝缘聚合物组分的混合策略在纳米复合体系中仅部分利用了石墨烯独特的导电性。在此,本文报道了一种通过激光辐照由聚合物共混物直接制备聚合物/石墨烯纳米复合材料的非混合方法。聚碳酸酯激光诱导石墨烯(PC-LIG)纳米复合材料是由PC/聚醚酰亚胺(PC/PEI)共混物在功率约为6 W、速度约为2 cm/s的市售激光划刻后制备而成。PC-LIG纳米复合材料获得了极高的电导率,范围为26至400 S/m,这取决于共混物中起始PEI相的体积百分比。据作者所知,这些电导率值比先前通过混合策略制备的导电聚合物/石墨烯纳米复合材料所报道的值至少高一个数量级。综合显微镜和光谱表征揭示了PEI相在PC相中嵌入柱状微观结构的完全石墨化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验