Suppr超能文献

丁香假单胞菌 pv. 番茄 DC3000 多突变体分泌冠菌素和两种类型 III 效应物,可从本氏烟叶片上的单个细菌菌落中产生可量化的褪绿斑。

Pseudomonas syringae pv. tomato DC3000 polymutants deploying coronatine and two type III effectors produce quantifiable chlorotic spots from individual bacterial colonies in Nicotiana benthamiana leaves.

机构信息

School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA.

出版信息

Mol Plant Pathol. 2018 Apr;19(4):935-947. doi: 10.1111/mpp.12579. Epub 2017 Sep 25.

Abstract

Primary virulence factors of Pseudomonas syringae pv. tomato DC3000 include the phytotoxin coronatine (COR) and a repertoire of 29 effector proteins injected into plant cells by the type III secretion system (T3SS). DC3000 derivatives differentially producing COR, the T3SS machinery and subsets of key effectors were constructed and assayed in leaves of Nicotiana benthamiana. Bacteria were inoculated by the dipping of whole plants and assayed for population growth and the production of chlorotic spots on leaves. The strains fell into three classes. Class I strains are T3SS but functionally effectorless, grow poorly in planta and produce faint chlorotic spots only if COR . Class II strains are T3SS or, if T3SS , also produce effectors AvrPtoB and HopM1. Class II strains grow better than class I strains in planta and, if COR , produce robust chlorotic spots. Class III strains are T3SS and minimally produce AvrPtoB, HopM1 and three other effectors encoded in the P. syringae conserved effector locus. These strains differ from class II strains in growing better in planta, and produce chlorotic spots without COR if the precursor coronafacic acid is produced. Assays for chlorotic spot formation, in conjunction with pressure infiltration of low-level inoculum and confocal microscopy of fluorescent protein-labelled bacteria, revealed that single bacteria in the apoplast are capable of producing colonies and associated leaf spots in a 1 : 1 : 1 manner. However, COR makes no significant contribution to the bacterial colonization of the apoplast, but, instead, enables a gratuitous, semi-quantitative, surface indicator of bacterial growth, which is determined by the strain's effector composition.

摘要

丁香假单胞菌 pv. 番茄 DC3000 的主要毒力因子包括植物毒素冠菌素(COR)和由 III 型分泌系统(T3SS)注入植物细胞的 29 种效应蛋白。构建并分析了 DC3000 衍生物在本氏烟叶片中差异产生 COR、T3SS 机制和关键效应子亚基的情况。通过整株植物浸渍接种细菌,并在叶片上检测细菌的种群生长和产生黄化斑的情况。这些菌株分为三类。I 类菌株是 T3SS,但功能上无效应子,在植物体内生长不良,如果产生 COR,则只产生微弱的黄化斑。II 类菌株是 T3SS,或者如果 T3SS,则还产生效应子 AvrPtoB 和 HopM1。II 类菌株在植物体内的生长状况优于 I 类菌株,如果产生 COR,则产生强烈的黄化斑。III 类菌株是 T3SS,且极少量产生 AvrPtoB、HopM1 和三个其他效应子,这些效应子由丁香假单胞菌保守效应子基因座编码。这些菌株与 II 类菌株的不同之处在于在植物体内更好地生长,如果产生前体 coronafacic 酸,则在没有 COR 的情况下产生黄化斑。黄化斑形成的测定,结合低水平接种物的压力渗透和荧光蛋白标记细菌的共聚焦显微镜检查,表明在质外体中单个细菌能够以 1:1:1 的方式产生菌落和相关的叶片斑点。然而,COR 对细菌在质外体中的定植没有显著贡献,但相反,能够提供一种无偿的、半定量的、细菌生长的表面指示物,这取决于菌株的效应子组成。

相似文献

3
CorR regulates multiple components of virulence in Pseudomonas syringae pv. tomato DC3000.
Mol Plant Microbe Interact. 2006 Jul;19(7):768-79. doi: 10.1094/MPMI-19-0768.
4
A Pseudomonas syringae pv. tomato avrE1/hopM1 mutant is severely reduced in growth and lesion formation in tomato.
Mol Plant Microbe Interact. 2006 Feb;19(2):99-111. doi: 10.1094/MPMI-19-0099.
9
Impact of temperature on in planta expression of genes involved in synthesis of the Pseudomonas syringae phytotoxin coronatine.
Mol Plant Microbe Interact. 2004 Oct;17(10):1095-102. doi: 10.1094/MPMI.2004.17.10.1095.

引用本文的文献

3
Cooperative virulence via the collective action of secreted pathogen effectors.
Nat Microbiol. 2023 Apr;8(4):640-650. doi: 10.1038/s41564-023-01328-8. Epub 2023 Feb 13.
5
Sensor-based phenotyping of above-ground plant-pathogen interactions.
Plant Methods. 2022 Mar 21;18(1):35. doi: 10.1186/s13007-022-00853-7.
6
Draft Genome Sequences of Pseudomonas syringae pv. tomato Strains J4 and J6, Isolated in Florida.
Microbiol Resour Announc. 2021 Apr 15;10(15):e00127-21. doi: 10.1128/MRA.00127-21.
8
Role of the acquisition of a type 3 secretion system in the emergence of novel pathogenic strains of Xanthomonas.
Mol Plant Pathol. 2019 Jan;20(1):33-50. doi: 10.1111/mpp.12737. Epub 2018 Oct 26.

本文引用的文献

2
Image-Based Quantification of Plant Immunity and Disease.
Mol Plant Microbe Interact. 2016 Dec;29(12):919-924. doi: 10.1094/MPMI-07-16-0129-TA. Epub 2016 Dec 20.
3
Bacteria establish an aqueous living space in plants crucial for virulence.
Nature. 2016 Nov 24;539(7630):524-529. doi: 10.1038/nature20166.
4
Quantitative, Image-Based Phenotyping Methods Provide Insight into Spatial and Temporal Dimensions of Plant Disease.
Plant Physiol. 2016 Oct;172(2):650-660. doi: 10.1104/pp.16.00984. Epub 2016 Jul 21.
6
Lights, camera, action: high-throughput plant phenotyping is ready for a close-up.
Curr Opin Plant Biol. 2015 Apr;24:93-9. doi: 10.1016/j.pbi.2015.02.006. Epub 2015 Feb 27.
7
The phytotoxin coronatine is a multifunctional component of the virulence armament of Pseudomonas syringae.
Planta. 2014 Dec;240(6):1149-65. doi: 10.1007/s00425-014-2151-x. Epub 2014 Aug 26.
8
Pseudomonas syringae pv. tomato DC3000: a model pathogen for probing disease susceptibility and hormone signaling in plants.
Annu Rev Phytopathol. 2013;51:473-98. doi: 10.1146/annurev-phyto-082712-102321. Epub 2013 May 31.
9
The coronatine toxin of Pseudomonas syringae is a multifunctional suppressor of Arabidopsis defense.
Plant Cell. 2012 Nov;24(11):4763-74. doi: 10.1105/tpc.112.105312. Epub 2012 Nov 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验