Suppr超能文献

细菌在植物中建立了一个对毒力至关重要的水生活空间。

Bacteria establish an aqueous living space in plants crucial for virulence.

作者信息

Xin Xiu-Fang, Nomura Kinya, Aung Kyaw, Velásquez André C, Yao Jian, Boutrot Freddy, Chang Jeff H, Zipfel Cyril, He Sheng Yang

机构信息

Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA.

Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Michigan State University, East Lansing, Michigan 48824, USA.

出版信息

Nature. 2016 Nov 24;539(7630):524-529. doi: 10.1038/nature20166.

Abstract

High humidity has a strong influence on the development of numerous diseases affecting the above-ground parts of plants (the phyllosphere) in crop fields and natural ecosystems, but the molecular basis of this humidity effect is not understood. Previous studies have emphasized immune suppression as a key step in bacterial pathogenesis. Here we show that humidity-dependent, pathogen-driven establishment of an aqueous intercellular space (apoplast) is another important step in bacterial infection of the phyllosphere. Bacterial effectors, such as Pseudomonas syringae HopM1, induce establishment of the aqueous apoplast and are sufficient to transform non-pathogenic P. syringae strains into virulent pathogens in immunodeficient Arabidopsis thaliana under high humidity. Arabidopsis quadruple mutants simultaneously defective in a host target (AtMIN7) of HopM1 and in pattern-triggered immunity could not only be used to reconstitute the basic features of bacterial infection, but also exhibited humidity-dependent dyshomeostasis of the endophytic commensal bacterial community in the phyllosphere. These results highlight a new conceptual framework for understanding diverse phyllosphere-bacterial interactions.

摘要

高湿度对影响农田和自然生态系统中植物地上部分(叶际)的多种病害发展具有强烈影响,但这种湿度效应的分子基础尚不清楚。先前的研究强调免疫抑制是细菌致病的关键步骤。在此我们表明,湿度依赖性、病原体驱动的细胞间水相空间(质外体)的形成是叶际细菌感染的另一个重要步骤。细菌效应蛋白,如丁香假单胞菌HopM1,可诱导水性质外体的形成,并且足以在高湿度条件下将无致病性的丁香假单胞菌菌株转化为免疫缺陷型拟南芥中的致病病原体。在HopM1的宿主靶点(AtMIN7)和模式触发免疫方面同时存在缺陷的拟南芥四重突变体,不仅可用于重构细菌感染的基本特征,还表现出叶际内生共生细菌群落的湿度依赖性动态失衡。这些结果突出了一个理解多种叶际-细菌相互作用的新概念框架。

相似文献

1
Bacteria establish an aqueous living space in plants crucial for virulence.
Nature. 2016 Nov 24;539(7630):524-529. doi: 10.1038/nature20166.
3
A bacterial virulence protein suppresses host innate immunity to cause plant disease.
Science. 2006 Jul 14;313(5784):220-3. doi: 10.1126/science.1129523.
4
Effector-triggered immunity blocks pathogen degradation of an immunity-associated vesicle traffic regulator in Arabidopsis.
Proc Natl Acad Sci U S A. 2011 Jun 28;108(26):10774-9. doi: 10.1073/pnas.1103338108. Epub 2011 Jun 13.
5
Pseudomonas syringae: what it takes to be a pathogen.
Nat Rev Microbiol. 2018 May;16(5):316-328. doi: 10.1038/nrmicro.2018.17. Epub 2018 Feb 26.
7
The pan-genome effector-triggered immunity landscape of a host-pathogen interaction.
Science. 2020 Feb 14;367(6479):763-768. doi: 10.1126/science.aax4079.
8
The Proteasome Acts as a Hub for Plant Immunity and Is Targeted by Pseudomonas Type III Effectors.
Plant Physiol. 2016 Nov;172(3):1941-1958. doi: 10.1104/pp.16.00808. Epub 2016 Sep 9.
9
RAR1, a central player in plant immunity, is targeted by Pseudomonas syringae effector AvrB.
Proc Natl Acad Sci U S A. 2006 Dec 12;103(50):19200-5. doi: 10.1073/pnas.0607279103. Epub 2006 Dec 5.
10
Evolutionarily conserved bacterial effectors hijack abscisic acid signaling to induce an aqueous environment in the apoplast.
Cell Host Microbe. 2022 Apr 13;30(4):489-501.e4. doi: 10.1016/j.chom.2022.02.006. Epub 2022 Mar 4.

引用本文的文献

1
Bacillus drives functional states in synthetic plant root bacterial communities.
Genome Biol. 2025 Sep 9;26(1):270. doi: 10.1186/s13059-025-03739-8.
2
Autophagy and Bacterial infections.
Autophagy Rep. 2025 Sep 1;4(1):2542904. doi: 10.1080/27694127.2025.2542904. eCollection 2025.
3
Drought recovery in plants triggers a cell-state-specific immune activation.
Nat Commun. 2025 Aug 29;16(1):8095. doi: 10.1038/s41467-025-63467-2.
4
Potential and challenges for application of microbiomes in agriculture.
Plant Cell. 2025 Aug 4;37(8). doi: 10.1093/plcell/koaf185.
6
A major trade-off between growth and defense in Arabidopsis thaliana can vanish in field conditions.
PLoS Biol. 2025 Jul 14;23(7):e3003237. doi: 10.1371/journal.pbio.3003237. eCollection 2025 Jul.
8
Pattern Recognition Receptors in Plant Immunity.
Adv Exp Med Biol. 2025;1476:425-451. doi: 10.1007/978-3-031-85340-1_17.
9
Arabidopsis CNL receptor SUT1 confers immunity in hydathodes against the vascular pathogen Xanthomonas campestris pv. campestris.
PLoS Pathog. 2025 Jun 30;21(6):e1013256. doi: 10.1371/journal.ppat.1013256. eCollection 2025 Jun.

本文引用的文献

1
Root Endophyte Colletotrichum tofieldiae Confers Plant Fitness Benefits that Are Phosphate Status Dependent.
Cell. 2016 Apr 7;165(2):464-74. doi: 10.1016/j.cell.2016.02.028. Epub 2016 Mar 17.
2
Functional overlap of the Arabidopsis leaf and root microbiota.
Nature. 2015 Dec 17;528(7582):364-9. doi: 10.1038/nature16192. Epub 2015 Dec 2.
3
Plant cells under siege: plant immune system versus pathogen effectors.
Curr Opin Plant Biol. 2015 Dec;28:1-8. doi: 10.1016/j.pbi.2015.08.008. Epub 2015 Sep 3.
5
Mucosal physical and chemical innate barriers: Lessons from microbial evasion strategies.
Semin Immunol. 2015 Mar;27(2):111-8. doi: 10.1016/j.smim.2015.03.011. Epub 2015 May 1.
6
Modulation of the host innate immune and inflammatory response by translocated bacterial proteins.
Cell Microbiol. 2015 Jun;17(6):785-795. doi: 10.1111/cmi.12445. Epub 2015 May 4.
7
Targeting of plant pattern recognition receptor-triggered immunity by bacterial type-III secretion system effectors.
Curr Opin Microbiol. 2015 Feb;23:14-22. doi: 10.1016/j.mib.2014.10.009. Epub 2014 Nov 13.
8
Plant PRRs and the activation of innate immune signaling.
Mol Cell. 2014 Apr 24;54(2):263-72. doi: 10.1016/j.molcel.2014.03.028.
9
Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis.
Proc Natl Acad Sci U S A. 2014 Mar 25;111(12):4632-7. doi: 10.1073/pnas.1400822111. Epub 2014 Feb 18.
10
Phytopathogen effectors subverting host immunity: different foes, similar battleground.
Cell Host Microbe. 2012 Oct 18;12(4):484-95. doi: 10.1016/j.chom.2012.09.003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验