Suppr超能文献

基于深度信念网络的齿轮传动链无监督故障诊断

Unsupervised Fault Diagnosis of a Gear Transmission Chain Using a Deep Belief Network.

作者信息

He Jun, Yang Shixi, Gan Chunbiao

机构信息

The State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China.

The Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China.

出版信息

Sensors (Basel). 2017 Jul 4;17(7):1564. doi: 10.3390/s17071564.

Abstract

Artificial intelligence (AI) techniques, which can effectively analyze massive amounts of fault data and automatically provide accurate diagnosis results, have been widely applied to fault diagnosis of rotating machinery. Conventional AI methods are applied using features selected by a human operator, which are manually extracted based on diagnostic techniques and field expertise. However, developing robust features for each diagnostic purpose is often labour-intensive and time-consuming, and the features extracted for one specific task may be unsuitable for others. In this paper, a novel AI method based on a deep belief network (DBN) is proposed for the unsupervised fault diagnosis of a gear transmission chain, and the genetic algorithm is used to optimize the structural parameters of the network. Compared to the conventional AI methods, the proposed method can adaptively exploit robust features related to the faults by unsupervised feature learning, thus requires less prior knowledge about signal processing techniques and diagnostic expertise. Besides, it is more powerful at modelling complex structured data. The effectiveness of the proposed method is validated using datasets from rolling bearings and gearbox. To show the superiority of the proposed method, its performance is compared with two well-known classifiers, i.e., back propagation neural network (BPNN) and support vector machine (SVM). The fault classification accuracies are 99.26% for rolling bearings and 100% for gearbox when using the proposed method, which are much higher than that of the other two methods.

摘要

人工智能(AI)技术能够有效分析大量故障数据并自动提供准确诊断结果,已广泛应用于旋转机械的故障诊断。传统的人工智能方法是利用人工操作员选择的特征来应用的,这些特征是基于诊断技术和现场专业知识手动提取的。然而,为每个诊断目的开发强大的特征通常既费力又耗时,而且为一项特定任务提取的特征可能不适用于其他任务。本文提出了一种基于深度信念网络(DBN)的新型人工智能方法,用于齿轮传动链的无监督故障诊断,并使用遗传算法优化网络的结构参数。与传统的人工智能方法相比,该方法可以通过无监督特征学习自适应地利用与故障相关的强大特征,因此对信号处理技术和诊断专业知识的先验知识要求较低。此外,它在对复杂结构数据进行建模方面更强大。使用滚动轴承和齿轮箱的数据集验证了该方法的有效性。为了展示该方法的优越性,将其性能与两种著名的分类器,即反向传播神经网络(BPNN)和支持向量机(SVM)进行了比较。使用该方法时,滚动轴承的故障分类准确率为99.26%,齿轮箱的故障分类准确率为100%,远高于其他两种方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2118/5539661/6537e48f10e7/sensors-17-01564-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验