Sama Farasha, Dhara Ashish Kumar, Akhtar Muhammad Nadeem, Chen Yan-Cong, Tong Ming-Liang, Ansari Istikhar A, Raizada Mukul, Ahmad Musheer, Shahid M, Siddiqi Zafar A
Department of Chemistry, Aligarh Muslim University, Aligarh-202002, India.
Dalton Trans. 2017 Aug 14;46(30):9801-9823. doi: 10.1039/c7dt01571b. Epub 2017 Jul 5.
Herein, the coordination chemistry of a series of Cu(ii) complexes of various aminoalcohol and benzoate ligands was explored. The pH-dependent reactions of copper(ii) salts with propanolamine (Hpa), N-methyl diethanolamine (Hmdea), triethanolamine (Htea), and butyl-diethanolamine (Hbudea) were carried out in the presence of various benzoates (benzoic acid, 2-hydroxy benzoic acid, 4-hydroxy benzoic acid, 3-methoxy benzoic acid, and 4-methoxy benzoic acid). The resulting complexes [Cu(pa)(benzoate)] (1), [Cu(pa)(3-methoxybenzoate)] (2), [Cu(pa)(4-methoxybenzoate)] (3), [Cu(Htea)(benzoate)]·2HO (4), [Cu(Htea)(2-hydroxybenzoate)]·2HO (5), [Cu(Htea)(4-hydroxybenzoate)][Cu(Htea)]·2HO (6), [Cu(Hmdea)][benzoate] (7), [Cu(Hmdea)][4-methoxybenzoate] (8), [Cu(Hbdea)][2-hydroxybenzoate] (9), [Cu(benzoate)(benzoic acid)] (10), [Cu(4-methoxybenzoate)(CHCN)]·4CHCN (11) and [Cu(Htea)(benzoate)(NO)] (12) were formed as mono-, di- or trinuclear entities depending upon the pH conditions of the reaction. The complexes were characterized employing spectral, magnetic, single-crystal X-ray and DFT/TDDFT studies. 7 and 8 exhibited emission peaks at 510 and 460 nm, respectively, in the solid-state photoluminescence (PL) spectra. The temperature variable magnetic properties of 1-12 revealed the presence of antiferromagnetic (in 1-3 and 7-11) or ferromagnetic interactions (in 4-6 and 12) with Curie constants C = 0.24 (7), 0.28 (8) or 0.35 cm K mol (9) and Weiss constants θ = -0.34 (7), -0.32 (8) or -0.40 (9) K for the mononuclear complexes. The dinuclear complexes demonstrated J values of -89.2(2) (1), -71.1(3) (2), -59.6(1) (3), 98(1) (4), 79.1(2) (5), -85.4(2) (10) and -89.5(2) (11) cm. Strong ferromagnetic interactions were observed in the case of 6 (J = 172(3) cm and zJ' = 2.3(2) cm), which were comparable with those of 12 (J = 197(2) cm, J = -9.3(3) cm). A correlation exists between the Cu-O-Cu angle and magnetic coupling in di- and trinuclear Cu(ii) complexes. Moreover, 4-6 were active catalysts for the oxidation of 3,5-DTBC to 3,5-DTBQ and showed catecholase activity in the order 4 > 5 > 6 (K = 943 (4), 698 (5) and 553 h (6)). This order can be rationalized in terms of the electron density on the ligand, which neutralizes the effective positive charge on Cu(ii), thus forming the less or more stable intermediate. The order of catecholase activity and the electronic spectral properties of 4-6 were also investigated by DFT and TDDFT studies, respectively.
在此,我们探索了一系列由各种氨基醇和苯甲酸酯配体形成的铜(II)配合物的配位化学。在各种苯甲酸酯(苯甲酸、2-羟基苯甲酸、4-羟基苯甲酸、3-甲氧基苯甲酸和4-甲氧基苯甲酸)存在的情况下,进行了铜(II)盐与丙醇胺(Hpa)、N-甲基二乙醇胺(Hmdea)、三乙醇胺(Htea)和丁基二乙醇胺(Hbudea)的pH依赖性反应。根据反应的pH条件,形成了单核、双核或三核实体的配合物[Cu(pa)(苯甲酸酯)](1)、[Cu(pa)(3-甲氧基苯甲酸酯)](2)、[Cu(pa)(4-甲氧基苯甲酸酯)](3)、[Cu(Htea)(苯甲酸酯)]·2H₂O(4)、[Cu(Htea)(2-羟基苯甲酸酯)]·2H₂O(5)、[Cu(Htea)(4-羟基苯甲酸酯)][Cu(Htea)]·2H₂O(6)、[Cu(Hmdea)][苯甲酸酯](7)、[Cu(Hmdea)][4-甲氧基苯甲酸酯](8)、[Cu(Hbdea)][2-羟基苯甲酸酯](9)、[Cu(苯甲酸酯)(苯甲酸)](10)、[Cu(4-甲氧基苯甲酸酯)(CH₃CN)]·4CH₃CN(11)和[Cu(Htea)(苯甲酸酯)(NO₃)](12)。通过光谱、磁性、单晶X射线和DFT/TDDFT研究对这些配合物进行了表征。在固态光致发光(PL)光谱中,7和8分别在510和460 nm处显示出发射峰。1-12的变温磁性性质表明存在反铁磁(在1-3和7-11中)或铁磁相互作用(在4-6和12中);对于单核配合物,居里常数C = 0.24(7)、0.28(8)或0.35 cm³K⁻¹mol⁻¹,魏斯常数θ = -0.34(7)、-0.32(8)或 -0.40(9)K。双核配合物的J值为 -89.2(2)(1)、-71.1(3)(2)、-59.6(1)(3)、98(1)(4)、79.1(2)(5)、-85.4(2)(10)和 -89.5(2)(11)cm⁻¹。在6的情况下观察到强铁磁相互作用(J = 172(3) cm⁻¹且zJ' = 2.3(2) cm⁻¹),这与12的情况相当(J = 197(2) cm⁻¹,J' = -9.3(3) cm⁻¹)。在双核和三核铜(II)配合物中,Cu - O - Cu角与磁耦合之间存在相关性。此外,4-6是将3,5 - DTBC氧化为3,5 - DTBQ的活性催化剂,并表现出邻苯二酚酶活性,顺序为4 > 5 > 6(K = 943(4)、698(5)和553 h⁻¹(6))。根据配体上的电子密度可以解释这个顺序,该电子密度中和了铜(II)上的有效正电荷,从而形成较不稳定或较稳定的中间体。还分别通过DFT和TDDFT研究了4-6的邻苯二酚酶活性顺序和电子光谱性质。