Suppr超能文献

用第二种贵金属来丰富银纳米晶体。

Enriching Silver Nanocrystals with a Second Noble Metal.

机构信息

School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States.

Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University , Nanjing 211816, P. R. China.

出版信息

Acc Chem Res. 2017 Jul 18;50(7):1774-1784. doi: 10.1021/acs.accounts.7b00216. Epub 2017 Jul 5.

Abstract

Noble-metal nanocrystals have received considerable interests owing to their fascinating properties and promising applications in areas including plasmonics, catalysis, sensing, imaging, and medicine. As demonstrated by ample examples, the performance of nanocrystals in these and related applications can be augmented by switching from monometallic to bimetallic systems. The inclusion of a second metal can enhance the properties and greatly expand the application landscape by bringing in new capabilities. Seeded growth offers a powerful route to bimetallic nanocrystals. This approach is built upon the concept that preformed nanocrystals with uniform, well-controlled size, shape, and structure can serve as seeds to template and direct the deposition of metal atoms. Seeded growth is, however, limited by galvanic replacement when the deposited metal is less reactive than the seed. The involvement of galvanic replacement not only makes it difficult to control the outcome of seeded growth but also causes degradation to some properties. We have successfully addressed this issue by reducing the salt precursor(s) into atoms with essentially no galvanic replacement. In the absence of self-nucleation, the atoms are preferentially deposited onto the seeds to generate bimetallic nanocrystals with controlled structures. In this Account, we use Ag nanocubes as an example to demonstrate the fabrication of Ag@M and Ag@Ag-M (M = Au, Pd, or Pt) nanocubes with a core-frame or core-shell structure by controlling the deposition of M atoms. A typical synthesis involves the titration of M (a precursor to M) ions into an aqueous suspension containing Ag nanocubes, ascorbic acid, and poly(vinylpyrrolidone) under ambient conditions. In one approach, aqueous sodium hydroxide is introduced to increase the initial pH of the reaction system. At pH = 11.9, ascorbic acid is dominated by ascorbate monoanion, a much stronger reductant, to suppress the galvanic replacement between M and Ag. In this case, the M atoms derived from the reduction by ascorbate monoanion are sequentially deposited on the edges, corners, and side faces to generate Ag@M core-frame and then core-shell nanocubes. The other approach involves the use of ascorbic acid as a relatively weak reductant while M is cotitrated with Ag ions in the absence of sodium hydroxide. At pH = 3.2, when the molar ratio of Ag to M is sufficiently high, the added Ag ions can effectively push the galvanic reaction backward and thus inhibit it. As a result, coreduction of the two precursors by ascorbic acid produces Ag and M atoms for the generation of Ag@Ag-M core-frame nanocubes with increasingly thicker ridges. The Ag@Ag-Pd core-frame nanocubes can serve as a dual catalyst to promote the stepwise reduction of nitroaromatics to aminoaromatics and then oxidation to azo compounds. The consecutive reactions can be monitored using surface-enhanced Raman scattering (SERS). The Ag@Au core-shell nanocubes with Au shells of three or six atomic layers exhibit plasmonic peaks almost identical to those of the Ag nanocubes while the chemical stability and SERS activity are substantially augmented. For both types of bimetallic nanocubes, the Ag cores can be selectively removed to generate nanoframes and nanoboxes.

摘要

贵金属纳米晶因其迷人的性质和在等离子体学、催化、传感、成像和医学等领域的广阔应用前景而受到广泛关注。大量实例表明,通过从单金属向双金属体系转变,可以提高纳米晶在这些和相关应用中的性能。引入第二种金属可以通过引入新的功能来增强性能并极大地扩展应用领域。种子生长为双金属纳米晶提供了一种强大的途径。这种方法基于这样的概念,即具有均匀、可控尺寸、形状和结构的预形成纳米晶可以作为模板,指导金属原子的沉积。然而,当沉积的金属比种子的反应性低时,种子生长受到电置换的限制。电置换的参与不仅使种子生长的结果难以控制,而且还会导致一些性质的退化。我们通过将盐前体还原为几乎没有电置换的原子成功地解决了这个问题。在没有自成核的情况下,原子优先沉积在种子上,从而生成具有可控结构的双金属纳米晶。在本报告中,我们以 Ag 纳米立方体形成为例,展示了通过控制 M 原子的沉积来制备具有核-壳或核-框架结构的 Ag@M 和 Ag@Ag-M(M=Au、Pd 或 Pt)纳米立方体形貌的方法。典型的合成方法包括在含有 Ag 纳米立方体形貌、抗坏血酸和聚乙烯吡咯烷酮的水溶液中,在环境条件下滴定 M(M 的前体)离子。在一种方法中,引入氢氧化钠水溶液以增加反应体系的初始 pH 值。在 pH=11.9 时,抗坏血酸主要以抗坏血酸单阴离子的形式存在,它是一种更强的还原剂,可抑制 M 和 Ag 之间的电置换。在这种情况下,来自抗坏血酸单阴离子还原的 M 原子顺序沉积在边缘、角和侧面上,以生成 Ag@M 核-壳和核-框架纳米立方体形貌。另一种方法涉及使用抗坏血酸作为相对较弱的还原剂,同时在没有氢氧化钠的情况下将 M 与 Ag 离子共滴定。在 pH=3.2 时,当 Ag 与 M 的摩尔比足够高时,添加的 Ag 离子可以有效地将电置换反应向后推并抑制它。因此,抗坏血酸还原两种前体,生成 Ag 和 M 原子,生成具有越来越厚脊的 Ag@Ag-M 核-框架纳米立方体形貌。Ag@Ag-Pd 核-框架纳米立方体形貌可用作双催化剂,以促进硝基芳烃逐步还原为氨基芳烃,然后氧化为偶氮化合物。可以使用表面增强拉曼散射(SERS)监测连续反应。具有三层或六层金壳的 Ag@Au 核-壳纳米立方体形貌的等离子体峰几乎与 Ag 纳米立方体形貌的等离子体峰相同,而化学稳定性和 SERS 活性则大大增强。对于这两种类型的双金属纳米立方体形貌,Ag 核可以选择性地去除,以生成纳米框架和纳米盒。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验