Cardozo E Fabian, Andrade Adriana, Mellors John W, Kuritzkes Daniel R, Perelson Alan S, Ribeiro Ruy M
Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, United States of America.
The Johns Hopkins University, Baltimore, MD, United States of America.
PLoS Pathog. 2017 Jul 5;13(7):e1006478. doi: 10.1371/journal.ppat.1006478. eCollection 2017 Jul.
The kinetics of HIV-1 decay under treatment depends on the class of antiretrovirals used. Mathematical models are useful to interpret the different profiles, providing quantitative information about the kinetics of virus replication and the cell populations contributing to viral decay. We modeled proviral integration in short- and long-lived infected cells to compare viral kinetics under treatment with and without the integrase inhibitor raltegravir (RAL). We fitted the model to data obtained from participants treated with RAL-containing regimes or with a four-drug regimen of protease and reverse transcriptase inhibitors. Our model explains the existence and quantifies the three phases of HIV-1 RNA decay in RAL-based regimens vs. the two phases observed in therapies without RAL. Our findings indicate that HIV-1 infection is mostly sustained by short-lived infected cells with fast integration and a short viral production period, and by long-lived infected cells with slow integration but an equally short viral production period. We propose that these cells represent activated and resting infected CD4+ T-cells, respectively, and estimate that infection of resting cells represent ~4% of productive reverse transcription events in chronic infection. RAL reveals the kinetics of proviral integration, showing that in short-lived cells the pre-integration population has a half-life of ~7 hours, whereas in long-lived cells this half-life is ~6 weeks. We also show that the efficacy of RAL can be estimated by the difference in viral load at the start of the second phase in protocols with and without RAL. Overall, we provide a mechanistic model of viral infection that parsimoniously explains the kinetics of viral load decline under multiple classes of antiretrovirals.
接受治疗时HIV-1衰减的动力学取决于所使用的抗逆转录病毒药物类别。数学模型有助于解释不同的情况,提供有关病毒复制动力学以及对病毒衰减有贡献的细胞群体的定量信息。我们对短期和长期感染细胞中的前病毒整合进行建模,以比较使用和不使用整合酶抑制剂拉替拉韦(RAL)治疗时的病毒动力学。我们将该模型与从接受含RAL方案治疗或接受蛋白酶和逆转录酶抑制剂四联疗法的参与者获得的数据进行拟合。我们的模型解释了基于RAL方案中HIV-1 RNA衰减的三个阶段的存在并对其进行了量化,而在无RAL的治疗中观察到两个阶段。我们的研究结果表明,HIV-1感染主要由整合快且病毒产生期短的短期感染细胞以及整合慢但病毒产生期同样短的长期感染细胞维持。我们提出这些细胞分别代表活化的和静止的感染CD4+ T细胞,并估计静止细胞感染占慢性感染中有效逆转录事件的约4%。RAL揭示了前病毒整合的动力学,表明在短期细胞中,整合前群体的半衰期约为7小时,而在长期细胞中,该半衰期约为6周。我们还表明,在有和没有RAL的方案中,可通过第二阶段开始时病毒载量的差异来估计RAL的疗效。总体而言,我们提供了一个病毒感染的机制模型,该模型简洁地解释了多类抗逆转录病毒药物治疗下病毒载量下降的动力学。