Suppr超能文献

优化糖尿病患者心血管风险的长期预测——VILDIA 评分。

Refining Long-Term Prediction of Cardiovascular Risk in Diabetes - The VILDIA Score.

机构信息

Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria.

Department of Internal Medicine, Division of Angiology, Medical University of Graz, Graz, Austria.

出版信息

Sci Rep. 2017 Jul 5;7(1):4700. doi: 10.1038/s41598-017-04935-8.

Abstract

Cardiovascular risk assessment in patients with diabetes relies on traditional risk factors. However, numerous novel biomarkers have been found to be independent predictors of cardiovascular disease, which might significantly improve risk prediction in diabetic patients. We aimed to improve prediction of cardiovascular risk in diabetic patients by investigating 135 evolving biomarkers. Based on selected biomarkers a clinically applicable prediction algorithm for long-term cardiovascular mortality was designed. We prospectively enrolled 864 diabetic patients of the LUdwigshafen RIsk and Cardiovascular health (LURIC) study with a median follow-up of 9.6 years. Independent risk factors were selected using bootstrapping based on a Cox regression analysis. The following seven variables were selected for the final multivariate model: NT-proBNP, age, male sex, renin, diabetes duration, Lp-PLA2 and 25-OH vitamin D3. The risk score based on the aforementioned variables demonstrated an excellent discriminatory power for 10-year cardiovascular survival with a C-statistic of 0.76 (P < 0.001), which was significantly better than the established UKPDS risk engine (C-statistic = 0.64, P < 0.001). Net reclassification confirmed a significant improvement of individual risk prediction by 22% (95% confidence interval: 14-30%) compared to the UKPDS risk engine (P < 0.001). The VILDIA score based on traditional cardiovascular risk factors and reinforced with novel biomarkers outperforms previous risk algorithms.

摘要

在糖尿病患者中,心血管风险评估依赖于传统的危险因素。然而,许多新的生物标志物已被发现是心血管疾病的独立预测因子,这可能显著改善糖尿病患者的风险预测。我们旨在通过研究 135 种不断发展的生物标志物来提高糖尿病患者心血管风险的预测能力。基于选定的生物标志物,我们设计了一种用于长期心血管死亡率的临床适用预测算法。我们前瞻性地招募了 LURIC 研究中的 864 名糖尿病患者,中位随访时间为 9.6 年。使用基于 Cox 回归分析的自举法选择独立风险因素。最终多变量模型选择了以下七个变量:NT-proBNP、年龄、男性、肾素、糖尿病病程、Lp-PLA2 和 25-OH 维生素 D3。基于上述变量的风险评分在 10 年内对心血管生存率具有出色的判别能力,C 统计量为 0.76(P<0.001),明显优于已建立的 UKPDS 风险引擎(C 统计量为 0.64,P<0.001)。净重新分类证实,与 UKPDS 风险引擎相比,个体风险预测的改善显著提高了 22%(95%置信区间:14-30%)(P<0.001)。基于传统心血管危险因素和新型生物标志物强化的 VILDIA 评分优于先前的风险算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dff5/5498499/bd4df1e127ee/41598_2017_4935_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验