Su Alvin W, Chen Yunchan, Wailes Dustin H, Wong Van W, Cai Shengqiang, Chen Albert C, Bugbee William D, Sah Robert L
Department of Bioengineering, University of California-San Diego, La Jolla, California.
Program in Materials Science and Engineering, University of California-San Diego, La Jolla, California.
J Orthop Res. 2018 Jan;36(1):377-386. doi: 10.1002/jor.23645. Epub 2017 Sep 5.
An osteochondral graft (OCG) is an effective treatment for articular cartilage and osteochondral defects. Impact of an OCG during insertion into the osteochondral recipient site (OCR) can cause chondrocyte death and matrix damage. The aim of the present study was to analyze the effects of graft-host interference fit and a modified OCG geometry on OCG insertion biomechanics and cartilage damage. The effects of interference fit (radius of OCG - radius of OCR), loose (0.00 mm), moderate (0.05 mm), tight (0.10 mm), and of a tight fit with OCG geometry modification (central region of decreased radius), were analyzed for OCG cylinders and OCR blocks from adult bovine knee joints with an instrumented drop tower apparatus. An increasingly tight (OCG - OCR) interference fit led to increased taps for insertion, peak axial force, graft cartilage axial compression, cumulative and total energy delivery to cartilage, lower time of peak axial force, lesser graft advancement during each tap, higher total crack length in the cartilage surface, and lower chondrocyte viability. The modified OCG, with reduction of diameter in the central area, altered the biomechanical insertion variables and biological consequences to be similar to those of the moderate interference fit scenario. Micro-computed tomography confirmed structural interference between the OCR bone and both the proximal and distal bone segments of the OCGs, with the central regions being slightly separated for the modified OCGs. These results clarify OCG insertion biomechanics and mechanobiology, and introduce a simple modification of OCGs that facilitates insertion with reduced energy while maintaining a structural interference fit. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:377-386, 2018.
骨软骨移植(OCG)是治疗关节软骨和骨软骨缺损的一种有效方法。在将OCG植入骨软骨受体部位(OCR)的过程中产生的冲击力会导致软骨细胞死亡和基质损伤。本研究的目的是分析移植体与宿主的干涉配合以及改良的OCG几何形状对OCG植入生物力学和软骨损伤的影响。使用仪器化落塔装置,对成年牛膝关节的OCG圆柱体和OCR块,分析干涉配合(OCG半径 - OCR半径)的影响,包括松配合(0.00毫米)、中度配合(0.05毫米)、紧配合(0.10毫米),以及紧配合且OCG几何形状改良(半径减小的中央区域)的影响。(OCG - OCR)干涉配合越紧,导致植入所需的敲击次数增加、峰值轴向力增加、移植软骨轴向压缩增加、传递到软骨的累积和总能量增加、峰值轴向力出现的时间缩短、每次敲击时移植体推进距离减小、软骨表面的总裂纹长度增加以及软骨细胞活力降低。中央区域直径减小的改良OCG改变了生物力学植入变量和生物学后果,使其与中度干涉配合情况相似。微型计算机断层扫描证实了OCR骨与OCG的近端和远端骨段之间存在结构干涉,改良OCG的中央区域略有分离。这些结果阐明了OCG植入的生物力学和机械生物学,并介绍了一种简单的OCG改良方法,该方法在保持结构干涉配合的同时,有助于以降低的能量进行植入。©2017骨科学研究协会。由威利期刊公司出版。《矫形外科研究杂志》36:377 - 386,2018年。