Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, California, USA.
Biophys J. 2011 Aug 17;101(4):916-24. doi: 10.1016/j.bpj.2011.07.006.
The negatively charged proteoglycans (PG) provide compressive resistance to articular cartilage by means of their fixed charge density (FCD) and high osmotic pressure (π(PG)), and the collagen network (CN) provides the restraining forces to counterbalance π(PG). Our objectives in this work were to: 1), account for collagen intrafibrillar water when transforming biochemical measurements into a FCD-π(PG) relationship; 2), compute π(PG) and CN contributions to the compressive behavior of full-thickness cartilage during bovine growth (fetal, calf, and adult) and human adult aging (young and old); and 3), predict the effect of depth from the articular surface on π(PG) in human aging. Extrafibrillar FCD (FCD(EF)) and π(PG) increased with bovine growth due to an increase in CN concentration, whereas PG concentration was steady. This maturation-related increase was amplified by compression. With normal human aging, FCD(EF) and π(PG) decreased. The π(PG)-values were close to equilibrium stress (σ(EQ)) in all bovine and young human cartilage, but were only approximately half of σ(EQ) in old human cartilage. Depth-related variations in the strain, FCD(EF), π(PG), and CN stress profiles in human cartilage suggested a functional deterioration of the superficial layer with aging. These results suggest the utility of the FCD-π(PG) relationship for elucidating the contribution of matrix macromolecules to the biomechanical properties of cartilage.
带负电荷的蛋白聚糖 (PG) 通过其固定电荷密度 (FCD) 和高渗透压 (π(PG)) 为关节软骨提供抗压阻力,而胶原网络 (CN) 提供约束力以平衡 π(PG)。我们在这项工作中的目标是:1),在将生化测量转化为 FCD-π(PG) 关系时,考虑到胶原原纤维内的水;2),计算 π(PG) 和 CN 对全厚软骨在牛生长(胎儿、小牛和成年)和人类成年衰老(年轻和年老)期间的压缩行为的贡献;3),预测在人类衰老过程中,距关节表面的深度对 π(PG) 的影响。由于 CN 浓度的增加,纤维外 FCD (FCD(EF)) 和 π(PG) 随着牛的生长而增加,而 PG 浓度保持稳定。这种与成熟相关的增加被压缩放大了。随着人类的正常衰老,FCD(EF) 和 π(PG) 下降。在所有牛和年轻人类软骨中,π(PG) 值接近平衡应力 (σ(EQ)),但在老年人类软骨中仅约为 σ(EQ) 的一半。人类软骨中应变、FCD(EF)、π(PG) 和 CN 应力分布的深度相关变化表明,随着年龄的增长,表层功能恶化。这些结果表明 FCD-π(PG) 关系可用于阐明基质大分子对软骨生物力学特性的贡献。