Suppr超能文献

快速磁共振波谱中混合时频数据的低秩增强矩阵恢复。

Low Rank Enhanced Matrix Recovery of Hybrid Time and Frequency Data in Fast Magnetic Resonance Spectroscopy.

出版信息

IEEE Trans Biomed Eng. 2018 Apr;65(4):809-820. doi: 10.1109/TBME.2017.2719709. Epub 2017 Jun 29.

Abstract

GOAL

The two dimensional magnetic resonance spectroscopy (MRS) possesses many important applications in bioengineering but suffers from long acquisition duration. Non-uniform sampling has been applied to the spatiotemporally encoded ultrafast MRS, but results in missing data in the hybrid time and frequency plane. An approach is proposed to recover this missing signal, of which enables high quality spectrum reconstruction. M ethods: The natural exponential characteristic of MRS is exploited to recover the hybrid time and frequency signal. The reconstruction issue is formulated as a low rank enhanced Hankel matrix completion problem and is solved by a fast numerical algorithm.

RESULTS

Experiments on synthetic and real MRS data show that the proposed method provides faithful spectrum reconstruction, and outperforms the state-of-the-art compressed sensing approach on recovering low-intensity spectral peaks and robustness to different sampling patterns. C onclusion: The exponential signal property serves as an useful tool to model the time-domain MRS signals and even allows missing data recovery. The proposed method has been shown to reconstruct high quality MRS spectra from non-uniformly sampled data in the hybrid time and frequency plane.

SIGNIFICANCE

Low-intensity signal reconstruction is generally challenging in biological MRS and we provide a solution to this problem. The proposed method may be extended to recover signals that generally can be modeled as a sum of exponential functions in biomedical engineering applications, e.g., signal enhancement, feature extraction, and fast sampling.

摘要

目的

二维磁共振波谱(MRS)在生物工程中有许多重要的应用,但采集时间长。非均匀采样已应用于时空编码的超快 MRS,但会导致混合时频平面中的数据缺失。提出了一种恢复缺失信号的方法,能够实现高质量的光谱重建。方法:利用 MRS 的自然指数特性来恢复混合时频信号。将重建问题表述为低秩增强汉克尔矩阵完成问题,并通过快速数值算法求解。结果:在合成和真实 MRS 数据上的实验表明,所提出的方法提供了忠实的光谱重建,并且在恢复低强度谱峰和对不同采样模式的鲁棒性方面优于最新的压缩感知方法。结论:指数信号特性可作为对时域 MRS 信号进行建模的有用工具,甚至允许进行缺失数据恢复。所提出的方法已被证明可从混合时频平面中的非均匀采样数据中重建高质量的 MRS 谱。意义:在生物 MRS 中,低强度信号的重建通常具有挑战性,我们为这个问题提供了一个解决方案。所提出的方法可以扩展到生物医学工程应用中一般可以建模为指数函数和的信号的恢复,例如信号增强、特征提取和快速采样。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验