Suppr超能文献

使用基于机器学习的一致性虚拟筛选鉴定人瓣内切核酸酶1(FEN1)抑制剂。

Identification of human flap endonuclease 1 (FEN1) inhibitors using a machine learning based consensus virtual screening.

作者信息

Deshmukh Amit Laxmikant, Chandra Sharat, Singh Deependra Kumar, Siddiqi Mohammad Imran, Banerjee Dibyendu

机构信息

Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Janakipuram Extension, Sitapur Road, Lucknow, 226031, India.

出版信息

Mol Biosyst. 2017 Jul 25;13(8):1630-1639. doi: 10.1039/c7mb00118e.

Abstract

Human Flap endonuclease1 (FEN1) is an enzyme that is indispensable for DNA replication and repair processes and inhibition of its Flap cleavage activity results in increased cellular sensitivity to DNA damaging agents (cisplatin, temozolomide, MMS, etc.), with the potential to improve cancer prognosis. Reports of the high expression levels of FEN1 in several cancer cells support the idea that FEN1 inhibitors may target cancer cells with minimum side effects to normal cells. In this study, we used large publicly available, high-throughput screening data of small molecule compounds targeted against FEN1. Two machine learning algorithms, Support Vector Machine (SVM) and Random Forest (RF), were utilized to generate four classification models from huge PubChem bioassay data containing probable FEN1 inhibitors and non-inhibitors. We also investigated the influence of randomly selected Zinc-database compounds as negative data on the outcome of classification modelling. The results show that the SVM model with inactive compounds was superior to RF with Matthews's correlation coefficient (MCC) of 0.67 for the test set. A Maybridge database containing approximately 53 000 compounds was screened and top ranking 5 compounds were selected for enzyme and cell-based in vitro screening. The compound JFD00950 was identified as a novel FEN1 inhibitor with in vitro inhibition of flap cleavage activity as well as cytotoxic activity against a colon cancer cell line, DLD-1.

摘要

人瓣内切核酸酶1(FEN1)是一种对DNA复制和修复过程不可或缺的酶,抑制其瓣切割活性会导致细胞对DNA损伤剂(顺铂、替莫唑胺、甲基磺酸甲酯等)的敏感性增加,具有改善癌症预后的潜力。FEN1在几种癌细胞中高表达水平的报道支持了FEN1抑制剂可能以对正常细胞最小的副作用靶向癌细胞的观点。在本研究中,我们使用了针对FEN1的小分子化合物的大型公开可用高通量筛选数据。利用支持向量机(SVM)和随机森林(RF)这两种机器学习算法,从包含可能的FEN1抑制剂和非抑制剂的庞大PubChem生物测定数据中生成了四个分类模型。我们还研究了随机选择的锌数据库化合物作为阴性数据对分类建模结果的影响。结果表明,含有无活性化合物的SVM模型优于RF模型,测试集的马修斯相关系数(MCC)为0.67。对一个包含约53000种化合物的Maybridge数据库进行了筛选,并选择了排名靠前的5种化合物进行基于酶和细胞的体外筛选。化合物JFD00950被鉴定为一种新型FEN1抑制剂,具有体外抑制瓣切割活性以及对结肠癌细胞系DLD-1的细胞毒性活性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验