INM-Leibniz Institute for New Materials, 66123, Saarbrücken, Germany.
Department of Materials Science and Engineering, Saarland University, 66123, Saarbrücken, Germany.
ChemSusChem. 2017 Dec 22;10(24):4914-4920. doi: 10.1002/cssc.201700967. Epub 2017 Aug 7.
We present a novel multichannel membrane flow-stream capacitive deionization (MC-MCDI) concept with two flow streams to control the environment around the electrodes and a middle channel for water desalination. The introduction of side channels to our new cell design allows operation in a highly saline environment, while the feed water stream in the middle channel (conventional CDI channel) is separated from the electrodes with anion- and cation-exchange membranes. At a high salinity gradient between side (1000 mm) and middle (5 mm) channels, MC-MCDI exhibited an unprecedented salt-adsorption capacity (SAC) of 56 mg g in the middle channel with charge efficiency close to unity and low energy consumption. This excellent performance corresponds to a fourfold increase in desalination performance compared to the state-of-the-art in a conventional CDI cell. The enhancement originates from the enhanced specific capacitance in high-molar saline media in agreement with the Gouy-Chapman-Stern theory and from a double-ion desorption/adsorption process of MC-MCDI through voltage operation from -1.2 to +1.2 V.
我们提出了一种新颖的多通道膜流电容去离子(MC-MCDI)概念,采用两个流道来控制电极周围的环境,中间流道用于海水淡化。在我们的新电池设计中引入侧流道可以在高盐环境下运行,而中间流道(传统 CDI 通道)中的进料水流与阴离子和阳离子交换膜将电极隔开。在侧流道(1000 mm)和中间流道(5 mm)之间存在高盐度梯度的情况下,MC-MCDI 在中间通道中表现出前所未有的盐吸附容量(SAC)为 56 mg g,电荷效率接近 1,能耗低。与传统 CDI 电池的最先进水平相比,这种优异的性能对应于脱盐性能提高了四倍。这种增强源于高摩尔盐介质中增强的比电容,符合 Gouy-Chapman-Stern 理论,并且通过从-1.2 到+1.2 V 的电压操作进行 MC-MCDI 的双离子解吸/吸附过程。