Departamento de Física and CICECO - Aveiro Institute of Materials, Universidade de Aveiro , Campus Santiago, 3810-193 Aveiro, Portugal.
Gerencia Química, CNEA, CONICET , Avenido Gral. Paz 1499 (B1650KNA) San Martín, Buenos Aires, Argentina.
Nano Lett. 2017 Aug 9;17(8):4746-4752. doi: 10.1021/acs.nanolett.7b01433. Epub 2017 Jul 11.
The past decade has seen significant progresses in the ability to fabricate new mesoporous thin films with highly controlled pore systems and emerging applications in sensing, electrical and thermal isolation, microfluidics, solar cells engineering, energy storage, and catalysis. Heat management at the micro- and nanoscale is a key issue in most of these applications, requiring a complete thermal characterization of the films that is commonly performed using electrical methods. Here, plasmonic-induced heating (through Au NPs) is combined with Tb/Eu luminescence thermometry to measure the thermal conductivity of silica and titania mesoporous nanolayers. This innovative method yields values in accord with those measured by the evasive and destructive conventional 3ω-electrical method, simultaneously overcoming their main limitations, for example, a mandatory deposition of additional isolating and metal layers over the films and the previous knowledge of the thermal contact resistance between the heating and the mesoporous layers.
过去十年中,人们在制造具有高度可控孔系统的新型介孔薄膜方面取得了重大进展,并在传感、电气和热隔离、微流控、太阳能电池工程、储能和催化等领域有了新兴的应用。在这些应用中,微纳尺度的热管理是一个关键问题,这需要对薄膜进行全面的热特性分析,通常使用电学方法来实现。在这里,等离子体诱导加热(通过 Au NPs)与 Tb/Eu 发光测温法相结合,用于测量二氧化硅和二氧化钛介孔纳米层的热导率。这种创新的方法得到的值与通过逃避和破坏性的传统 3ω 电学方法测量的值一致,同时克服了它们的主要局限性,例如,必须在薄膜上沉积额外的隔离层和金属层,以及对加热层和介孔层之间的热接触电阻有预先的了解。