Suppr超能文献

高山冰川前缘土壤中大气甲烷氧化的高时空变异性

High Temporal and Spatial Variability of Atmospheric-Methane Oxidation in Alpine Glacier Forefield Soils.

作者信息

Chiri Eleonora, Nauer Philipp A, Rainer Edda-Marie, Zeyer Josef, Schroth Martin H

机构信息

Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zurich, Zurich, Switzerland.

Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zurich, Zurich, Switzerland

出版信息

Appl Environ Microbiol. 2017 Aug 31;83(18). doi: 10.1128/AEM.01139-17. Print 2017 Sep 15.

Abstract

Glacier forefield soils can provide a substantial sink for atmospheric CH, facilitated by aerobic methane-oxidizing bacteria (MOB). However, MOB activity, abundance, and community structure may be affected by soil age, MOB location in different forefield landforms, and temporal fluctuations in soil physical parameters. We assessed the spatial and temporal variability of atmospheric-CH oxidation in an Alpine glacier forefield during the snow-free season of 2013. We quantified CH flux in soils of increasing age and in different landforms (sandhill, terrace, and floodplain forms) by using soil gas profile and static flux chamber methods. To determine MOB abundance and community structure, we employed gene-based quantitative PCR and targeted amplicon sequencing. Uptake of CH increased in magnitude and decreased in variability with increasing soil age. Sandhill soils exhibited CH uptake rates ranging from -3.7 to -0.03 mg CH m day Floodplain and terrace soils exhibited lower uptake rates and even intermittent CH emissions. Linear mixed-effects models indicated that soil age and landform were the dominating factors shaping CH flux, followed by cumulative rainfall (weighted sum ≤4 days prior to sampling). Of 31 MOB operational taxonomic units retrieved, ∼30% were potentially novel, and ∼50% were affiliated with upland soil clusters gamma and alpha. The MOB community structures in floodplain and terrace soils were nearly identical but differed significantly from the highly variable sandhill soil communities. We concluded that soil age and landform modulate the soil CH sink strength in glacier forefields and that recent rainfall affects its short-term variability. This should be taken into account when including this environment in future CH inventories. Oxidation of methane (CH) in well-drained, "upland" soils is an important mechanism for the removal of this potent greenhouse gas from the atmosphere. It is largely mediated by aerobic, methane-oxidizing bacteria (MOB). Whereas there is abundant information on atmospheric-CH oxidation in mature upland soils, little is known about this important function in young, developing soils, such as those found in glacier forefields, where new sediments are continuously exposed to the atmosphere as a result of glacial retreat. In this field-based study, we investigated the spatial and temporal variability of atmospheric-CH oxidation and associated MOB communities in Alpine glacier forefield soils, aiming at better understanding the factors that shape the sink for atmospheric CH in this young soil ecosystem. This study contributes to the knowledge on the dynamics of atmospheric-CH oxidation in developing upland soils and represents a further step toward the inclusion of Alpine glacier forefield soils in global CH inventories.

摘要

在好氧甲烷氧化细菌(MOB)的作用下,冰川前缘土壤能够成为大气中甲烷的重要汇。然而,MOB的活性、丰度和群落结构可能会受到土壤年龄、MOB在不同前缘地貌中的位置以及土壤物理参数的时间波动的影响。我们评估了2013年无雪季节阿尔卑斯山冰川前缘大气甲烷氧化的时空变异性。我们通过土壤气体剖面和静态通量箱方法,对年龄不断增加的土壤以及不同地貌(沙丘、阶地和洪泛平原)中的甲烷通量进行了量化。为了确定MOB的丰度和群落结构,我们采用了基于基因的定量PCR和靶向扩增子测序技术。随着土壤年龄的增加,甲烷的吸收量增加,变异性降低。沙丘土壤的甲烷吸收率在-3.7至-0.03毫克甲烷/平方米·天之间。洪泛平原和阶地土壤的吸收率较低,甚至会间歇性地排放甲烷。线性混合效应模型表明,土壤年龄和地貌是影响甲烷通量的主要因素,其次是累积降雨量(采样前≤4天的加权总和)。在检索到的31个MOB操作分类单元中,约30%可能是新物种,约50%与高地土壤簇γ和α相关。洪泛平原和阶地土壤中的MOB群落结构几乎相同,但与高度可变的沙丘土壤群落有显著差异。我们得出结论,土壤年龄和地貌调节着冰川前缘土壤中大气甲烷汇的强度,近期降雨影响其短期变异性。在将这种环境纳入未来的甲烷清单时应考虑到这一点。在排水良好的“高地”土壤中,甲烷(CH)的氧化是从大气中去除这种强效温室气体的重要机制。这主要由好氧甲烷氧化细菌(MOB)介导。虽然关于成熟高地土壤中大气甲烷氧化有丰富的信息,但对于年轻的发育中土壤(如冰川前缘发现的土壤,由于冰川退缩,新沉积物不断暴露于大气中)的这一重要功能却知之甚少。在这项基于实地的研究中,我们调查了阿尔卑斯山冰川前缘土壤中大气甲烷氧化及相关MOB群落的时空变异性,旨在更好地了解影响这种年轻土壤生态系统中大气甲烷汇的因素。这项研究有助于了解发育中高地土壤中大气甲烷氧化的动态,并朝着将阿尔卑斯山冰川前缘土壤纳入全球甲烷清单迈出了进一步的一步。

相似文献

1
High Temporal and Spatial Variability of Atmospheric-Methane Oxidation in Alpine Glacier Forefield Soils.
Appl Environ Microbiol. 2017 Aug 31;83(18). doi: 10.1128/AEM.01139-17. Print 2017 Sep 15.
2
Methane dynamics in the Hailuogou Glacier forefield, Southwest China.
Environ Res. 2022 Nov;214(Pt 1):113767. doi: 10.1016/j.envres.2022.113767. Epub 2022 Jun 27.
3
Field-scale tracking of active methane-oxidizing communities in a landfill cover soil reveals spatial and seasonal variability.
Environ Microbiol. 2015 May;17(5):1721-37. doi: 10.1111/1462-2920.12617. Epub 2014 Oct 13.
4
Atmospheric Methane Oxidizers Are Dominated by Upland Soil Cluster Alpha in 20 Forest Soils of China.
Microb Ecol. 2020 Nov;80(4):859-871. doi: 10.1007/s00248-020-01570-1. Epub 2020 Aug 15.
5
Does dissolved organic carbon regulate biological methane oxidation in semiarid soils?
Glob Chang Biol. 2013 Jul;19(7):2149-57. doi: 10.1111/gcb.12201. Epub 2013 Apr 23.
6
Divergent drivers of the microbial methane sink in temperate forest and grassland soils.
Glob Chang Biol. 2021 Feb;27(4):929-940. doi: 10.1111/gcb.15430. Epub 2020 Nov 22.
7
9
Atmospheric methane oxidizers are present and active in Canadian high Arctic soils.
FEMS Microbiol Ecol. 2014 Aug;89(2):257-69. doi: 10.1111/1574-6941.12287. Epub 2014 Feb 19.
10
Upland soil cluster γ dominates the methanotroph communities in the karst Heshang Cave.
FEMS Microbiol Ecol. 2018 Dec 1;94(12). doi: 10.1093/femsec/fiy192.

引用本文的文献

2
Following the flow-Microbial ecology in surface- and groundwaters in the glacial forefield of a rapidly retreating glacier in Iceland.
Environ Microbiol. 2022 Dec;24(12):5840-5858. doi: 10.1111/1462-2920.16104. Epub 2022 Jul 13.
4
USC Dominated Community Composition and Cooccurrence Network of Methanotrophs and Bacteria in Subterranean Karst Caves.
Microbiol Spectr. 2021 Sep 3;9(1):e0082021. doi: 10.1128/Spectrum.00820-21. Epub 2021 Aug 18.
5
Termite mounds contain soil-derived methanotroph communities kinetically adapted to elevated methane concentrations.
ISME J. 2020 Nov;14(11):2715-2731. doi: 10.1038/s41396-020-0722-3. Epub 2020 Jul 24.

本文引用的文献

2
Structures of Microbial Communities in Alpine Soils: Seasonal and Elevational Effects.
Front Microbiol. 2015 Nov 26;6:1330. doi: 10.3389/fmicb.2015.01330. eCollection 2015.
3
Microbial abundance and community structure in a melting alpine snowpack.
Extremophiles. 2015 May;19(3):631-42. doi: 10.1007/s00792-015-0744-3. Epub 2015 Mar 18.
4
Field-scale tracking of active methane-oxidizing communities in a landfill cover soil reveals spatial and seasonal variability.
Environ Microbiol. 2015 May;17(5):1721-37. doi: 10.1111/1462-2920.12617. Epub 2014 Oct 13.
7
Poly-use multi-level sampling system for soil-gas transport analysis in the vadose zone.
Environ Sci Technol. 2013 Oct 1;47(19):11122-30. doi: 10.1021/es401958u. Epub 2013 Sep 10.
8
The active methanotrophic community in a wetland from the High Arctic.
Environ Microbiol Rep. 2011 Aug;3(4):466-72. doi: 10.1111/j.1758-2229.2010.00237.x. Epub 2011 Feb 10.
9
phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data.
PLoS One. 2013 Apr 22;8(4):e61217. doi: 10.1371/journal.pone.0061217. Print 2013.
10
Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales.
Glob Chang Biol. 2013 May;19(5):1325-46. doi: 10.1111/gcb.12131. Epub 2013 Feb 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验