Suppr超能文献

离子和速度图成像用于表面动力学和动力学研究。

Ion and velocity map imaging for surface dynamics and kinetics.

机构信息

Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstraße 6, 37077 Göttingen, Germany.

出版信息

J Chem Phys. 2017 Jul 7;147(1):013939. doi: 10.1063/1.4983307.

Abstract

We describe a new instrument that uses ion imaging to study molecular beam-surface scattering and surface desorption kinetics, allowing independent determination of both residence times on the surface and scattering velocities of desorbing molecules. This instrument thus provides the capability to derive true kinetic traces, i.e., product flux versus residence time, and allows dramatically accelerated data acquisition compared to previous molecular beam kinetics methods. The experiment exploits non-resonant multiphoton ionization in the near-IR using a powerful 150-fs laser pulse, making detection more general than previous experiments using resonance enhanced multiphoton ionization. We demonstrate the capabilities of the new instrument by examining the desorption kinetics of CO on Pd(111) and Pt(111) and obtain both pre-exponential factors and activation energies of desorption. We also show that the new approach is compatible with velocity map imaging.

摘要

我们描述了一种新的仪器,该仪器使用离子成像来研究分子束-表面散射和表面解吸动力学,从而能够独立确定表面停留时间和解吸分子的散射速度。因此,该仪器提供了获得真实动力学轨迹的能力,即产物通量与停留时间的关系,并且与以前的分子束动力学方法相比,能够显著加速数据采集。该实验利用近红外区的非共振多光子电离,使用强大的 150-fs 激光脉冲,使检测比以前使用共振增强多光子电离的实验更通用。我们通过研究 CO 在 Pd(111)和 Pt(111)上的解吸动力学来演示新仪器的功能,并获得解吸的前指数因子和激活能。我们还表明,新方法与速度映射成像兼容。

相似文献

1
Ion and velocity map imaging for surface dynamics and kinetics.
J Chem Phys. 2017 Jul 7;147(1):013939. doi: 10.1063/1.4983307.
2
CO desorption from a catalytic surface: elucidation of the role of steps by velocity-selected residence time measurements.
J Am Chem Soc. 2015 Feb 4;137(4):1465-75. doi: 10.1021/ja509530k. Epub 2015 Jan 23.
3
Measuring Transient Reaction Rates from Nonstationary Catalysts.
ACS Catal. 2020 Dec 4;10(23):14056-14066. doi: 10.1021/acscatal.0c03773. Epub 2020 Nov 17.
5
State-resolved velocity map imaging of surface-scattered molecular flux.
Phys Chem Chem Phys. 2012 Mar 28;14(12):4070-80. doi: 10.1039/c1cp22938a. Epub 2011 Dec 9.
6
Laser-driven acoustic desorption of organic molecules from back-irradiated solid foils.
Anal Chem. 2007 Nov 1;79(21):8232-41. doi: 10.1021/ac070584o. Epub 2007 Oct 4.
7
Chirality detection of surface desorption products using photoelectron circular dichroism.
J Chem Phys. 2020 Aug 7;153(5):054707. doi: 10.1063/5.0014917.
8
Near-ambient pressure velocity map imaging.
J Chem Phys. 2022 Jul 21;157(3):034201. doi: 10.1063/5.0098495.
9
Activation of large ions in FT-ICR mass spectrometry.
Mass Spectrom Rev. 2005 Mar-Apr;24(2):135-67. doi: 10.1002/mas.20012.

引用本文的文献

1
The Mechanism and Rate-Determining Step of Catalytic Ammonia Oxidation on Pd(332) at High Temperatures.
ACS Catal. 2025 Jun 5;15(12):10521-10530. doi: 10.1021/acscatal.5c01448. eCollection 2025 Jun 20.
2
Best-of-both-worlds computational approaches to difficult-to-model dissociation reactions on metal surfaces.
Chem Sci. 2024 Nov 5;16(2):480-506. doi: 10.1039/d4sc06004k. eCollection 2025 Jan 2.
3
Vibrational energy transfer in collisions of molecules with metal surfaces.
Phys Chem Chem Phys. 2024 May 29;26(21):15090-15114. doi: 10.1039/d4cp00957f.
4
Hyperthermal velocity distributions of recombinatively-desorbing oxygen from Ag(111).
Front Chem. 2023 Aug 2;11:1248456. doi: 10.3389/fchem.2023.1248456. eCollection 2023.
5
Spin-dependent reactivity and spin-flipping dynamics in oxygen atom scattering from graphite.
Nat Chem. 2023 Jul;15(7):1006-1011. doi: 10.1038/s41557-023-01204-2. Epub 2023 May 22.
7
Adsorption dynamics of O on Cu(111): a supersonic molecular beam study.
Phys Chem Chem Phys. 2023 May 31;25(21):14862-14868. doi: 10.1039/d3cp01215h.
8
Binding Energy and Diffusion Barrier of Formic Acid on Pd(111).
J Phys Chem A. 2023 Jan 12;127(1):142-152. doi: 10.1021/acs.jpca.2c07414. Epub 2022 Dec 30.
9
Steric Hindrance of NH Diffusion on Pt(111) by Co-Adsorbed O-Atoms.
J Am Chem Soc. 2022 Nov 30;144(47):21791-21799. doi: 10.1021/jacs.2c10458. Epub 2022 Nov 18.
10
Generation of Sub-nanosecond H Atom Pulses for Scattering from Single-Crystal Epitaxial Graphene.
J Phys Chem A. 2022 Nov 3;126(43):8101-8110. doi: 10.1021/acs.jpca.2c05364. Epub 2022 Oct 16.

本文引用的文献

1
Photodesorption of NO from Au(100) using 3D surface-velocity map imaging.
J Chem Phys. 2016 Nov 14;145(18):184201. doi: 10.1063/1.4967248.
2
Activated Dissociation of HCl on Au(111).
J Phys Chem Lett. 2016 Apr 7;7(7):1346-50. doi: 10.1021/acs.jpclett.6b00289. Epub 2016 Mar 24.
3
Electron-hole pair excitation determines the mechanism of hydrogen atom adsorption.
Science. 2015 Dec 11;350(6266):1346-9. doi: 10.1126/science.aad4972. Epub 2015 Nov 26.
4
Using Ion Imaging to Measure Velocity Distributions in Surface Scattering Experiments.
J Phys Chem A. 2015 Dec 17;119(50):12255-62. doi: 10.1021/acs.jpca.5b06272. Epub 2015 Oct 6.
5
CO desorption from a catalytic surface: elucidation of the role of steps by velocity-selected residence time measurements.
J Am Chem Soc. 2015 Feb 4;137(4):1465-75. doi: 10.1021/ja509530k. Epub 2015 Jan 23.
8
Exploring surface photoreaction dynamics using pixel imaging mass spectrometry (PImMS).
J Chem Phys. 2013 Aug 28;139(8):084202. doi: 10.1063/1.4818997.
9
Experimental and theoretical study of multi-quantum vibrational excitation: NO(v = 0→1,2,3) in collisions with Au(111).
J Phys Chem A. 2013 Aug 15;117(32):7091-101. doi: 10.1021/jp400313b. Epub 2013 Apr 19.
10
Adsorption energetics of CO on supported Pd nanoparticles as a function of particle size by single crystal microcalorimetry.
Phys Chem Chem Phys. 2011 Oct 6;13(37):16800-10. doi: 10.1039/c1cp21677e. Epub 2011 Aug 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验