Physics Department, TU Dortmund University, 44221 Dortmund, Germany.
J Chem Phys. 2017 Jul 7;147(1):014901. doi: 10.1063/1.4990418.
We discuss the adsorption of semiflexible polymers to a planar attractive wall and focus on the questions of the adsorption threshold for polymers of finite length and their loop and tail distributions using both Monte Carlo simulations and analytical arguments. For the adsorption threshold, we find three regimes: (i) a flexible or Gaussian regime if the persistence length is smaller than the adsorption potential range, (ii) a semiflexible regime if the persistence length is larger than the potential range, and (iii) for finite polymers, a novel crossover to a rigid rod regime if the deflection length exceeds the contour length. In the flexible and semiflexible regimes, finite size corrections arise because the correlation length exceeds the contour length. In the rigid rod regime, however, it is essential how the global orientational or translational degrees of freedom are restricted by grafting or confinement. We discuss finite size corrections for polymers grafted to the adsorbing surface and for polymers confined by a second (parallel) hard wall. Based on these results, we obtain a method to analyze adsorption data for finite semiflexible polymers such as filamentous actin. For the loop and tail distributions, we find power laws with an exponential decay on length scales exceeding the correlation length. We derive and confirm the loop and tail power law exponents for flexible and semiflexible polymers. This allows us to explain that, close to the transition, semiflexible polymers have significantly smaller loops and both flexible and semiflexible polymers desorb by expanding their tail length. The tail distribution allows us to extract the free energy per length of adsorption for actin filaments from experimental data [D. Welch et al., Soft Matter 11, 7507 (2015)].
我们讨论了半柔性聚合物在平面吸引壁上的吸附,并集中讨论了有限长聚合物的吸附阈值及其环和尾分布的问题,使用了蒙特卡罗模拟和分析论证。对于吸附阈值,我们发现有三个区域:(i)如果持久长度小于吸附势范围,则为柔性或高斯区域,(ii)如果持久长度大于势范围,则为半柔性区域,以及(iii)对于有限聚合物,如果偏折长度超过轮廓长度,则会出现新的刚性棒状区域的交叉。在柔性和半柔性区域中,由于相关长度超过轮廓长度,因此会出现有限尺寸的修正。然而,在刚性棒区域中,由接枝或限制引起的全局方向或平移自由度的限制是至关重要的。我们讨论了接枝到吸附表面的聚合物和受第二个(平行)硬壁限制的聚合物的有限尺寸修正。基于这些结果,我们获得了一种分析有限半柔性聚合物(例如丝状肌动蛋白)吸附数据的方法。对于环和尾分布,我们发现超出相关长度的长度尺度上存在幂律和指数衰减。我们推导出并验证了柔性和半柔性聚合物的环和尾幂律指数。这使我们能够解释在接近转变时,半柔性聚合物的环明显较小,并且柔性和半柔性聚合物都通过扩展其尾部长度来解吸。尾分布使我们能够从实验数据中提取肌动蛋白丝的吸附自由能[D.Welch 等人,Soft Matter 11,7507(2015)]。