Suppr超能文献

使用带电微悬臂梁作为门控机械积分器观察到的微秒光电容瞬变。

Microsecond photocapacitance transients observed using a charged microcantilever as a gated mechanical integrator.

作者信息

Dwyer Ryan P, Nathan Sarah R, Marohn John A

机构信息

Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853-1301, USA.

出版信息

Sci Adv. 2017 Jun 9;3(6):e1602951. doi: 10.1126/sciadv.1602951. eCollection 2017 Jun.

Abstract

How light is converted to electricity in blends of organic donor and acceptor molecules is an unsettled question, partly because the spatial heterogeneity present in these blends makes them challenging to characterize. Although scanned-probe measurements have provided crucially important microscopic insights into charge generation and transport in these blends, achieving the subnanosecond time resolution needed to directly observe the fate of photogenerated charges has proven difficult. We use a charged microcantilever as a gated mechanical integrator to record photocapacitance indirectly by measuring the accumulated change in cantilever phase as a function of the time delay between precisely synchronized voltage and light pulses. In contrast with previous time-resolved scanned-probe photocapacitance measurements, the time resolution of this method is set by the rise and fall time of the voltage and light pulses and not by the inverse detection bandwidth. We demonstrate in an organic donor-acceptor blend the ability of this indirect, "phase-kick" technique to record multiexponential photocapacitance transients on time scales ranging from 40 μs to 10 ms. The technique's ability to measure subcycle, nanosecond charge dynamics is demonstrated by measuring the tens of nanosecond sample electrical charging time.

摘要

在有机供体和受体分子的混合物中,光如何转化为电是一个尚未解决的问题,部分原因是这些混合物中存在的空间异质性使得对其进行表征具有挑战性。尽管扫描探针测量已经为这些混合物中的电荷产生和传输提供了至关重要的微观见解,但事实证明,要获得直接观察光生电荷命运所需的亚纳秒时间分辨率是困难的。我们使用带电微悬臂梁作为门控机械积分器,通过测量悬臂梁相位的累积变化作为精确同步的电压和光脉冲之间时间延迟的函数,来间接记录光电容。与以前的时间分辨扫描探针光电容测量不同,这种方法的时间分辨率由电压和光脉冲的上升和下降时间决定,而不是由反向检测带宽决定。我们在一种有机供体 - 受体混合物中证明了这种间接的“相位激发”技术能够在40 μs至10 ms的时间尺度上记录多指数光电容瞬变。通过测量数十纳秒的样品充电时间,证明了该技术测量亚周期、纳秒级电荷动力学的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9f6/5479705/dd04bb9d4aa8/1602951-F1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验