School of Engineering & Materials Science, Queen Mary University of London , Mile End Road, London E1 4NS, U.K.
The NanoVision Centre, Queen Mary University of London , Mile End Road, London E1 4NS, U.K.
Environ Sci Technol. 2017 Aug 15;51(16):8917-8925. doi: 10.1021/acs.est.7b00770. Epub 2017 Jul 24.
Suspended particulate matter (SPM) is present in the natural aquatic environment as loosely bound aggregates or "flocs" and is responsible for the transport and fate of sediment, carbon, nutrients, pollutants, pathogens and manufactured nanoparticles from catchment to coast. Accurate prediction of SPM hydrodynamics requires the quantification of 3D floc properties (size, shape, density and porosity) that span several spatial scales. Yet, current techniques (video camera systems, optical microscopy and transmission electron microscopy, TEM) can only provide 2D simplifications of size and shape with a spatial resolution gap between the "gross" (>100s μm) and nanoscale (<1 μm). Here, we translate 3D-microscopy techniques (focused ion beam nanotomography, FIB-nt) typically used in the biomedical sciences to the study of natural flocculated SPM filling both this spatial and dimensional gap. Fragile 3D floc samples were successfully captured and stabilized, identifying five basic organic and inorganic floc components and quantifying porosity and bacteria numbers. This provides new 3D floc geometric data sets at the nanoscale that will be critical in the development of cohesive sediment transport models. Detailed compositional and structural information could provide novel insights into the association of pathogens and pollutants with SPM and their impact on aquatic life.
悬浮颗粒物 (SPM) 以松散结合的聚集体或“絮体”的形式存在于自然水生态环境中,负责将沉积物、碳、养分、污染物、病原体和制造的纳米颗粒从集水区输送到沿海地区。准确预测 SPM 水动力需要量化跨越多个空间尺度的 3D 絮体特性(大小、形状、密度和孔隙率)。然而,目前的技术(摄像机系统、光学显微镜和透射电子显微镜,TEM)只能提供大小和形状的 2D 简化,在“宏观”(>100s μm)和纳米尺度(<1 μm)之间存在空间分辨率差距。在这里,我们将生物医学科学中常用的 3D 显微镜技术(聚焦离子束纳米断层扫描,FIB-nt)转化为对天然絮状 SPM 的研究,填补了这一空间和维度差距。易碎的 3D 絮体样本被成功捕获和稳定,确定了五种基本的有机和无机絮体成分,并量化了孔隙率和细菌数量。这为开发粘性泥沙输运模型提供了关键的新的纳米尺度 3D 絮体几何数据集。详细的组成和结构信息可以为病原体和污染物与 SPM 的关联及其对水生生物的影响提供新的见解。