Irons Tom J P, Zemen Jan, Teale Andrew M
School of Chemistry, University of Nottingham , University Park, Nottingham NG7 2RD, United Kingdom.
J Chem Theory Comput. 2017 Aug 8;13(8):3636-3649. doi: 10.1021/acs.jctc.7b00540. Epub 2017 Jul 27.
The use of London atomic orbitals (LAOs) in a nonperturbative manner enables the determination of gauge-origin invariant energies and properties for molecular species in arbitrarily strong magnetic fields. Central to the efficient implementation of such calculations for molecular systems is the evaluation of molecular integrals, particularly the electron repulsion integrals (ERIs). We present an implementation of several different algorithms for the evaluation of ERIs over Gaussian-type LAOs at arbitrary magnetic field strengths. The efficiencies of generalized McMurchie-Davidson (MD), Head-Gordon-Pople (HGP), and Rys quadrature schemes are compared. For the Rys quadrature implementation, we avoid the use of high precision arithmetic and interpolation schemes in the computation of the quadrature roots and weights, enabling the application of this algorithm seamlessly to a wide range of magnetic fields. The efficiency of each generalized algorithm is compared by numerical application, classifying the ERIs according to their total angular momenta and evaluating their performance for primitive and contracted basis sets. In common with zero-field integral evaluation, no single algorithm is optimal for all angular momenta; thus, a simple mixed scheme is put forward that selects the most efficient approach to calculate the ERIs for each shell quartet. The mixed approach is significantly more efficient than the exclusive use of any individual algorithm.
以非微扰方式使用伦敦原子轨道(LAO)能够确定任意强磁场中分子物种的规范原点不变能量和性质。对于分子系统而言,此类计算有效实施的核心在于分子积分的评估,尤其是电子排斥积分(ERI)。我们展示了几种不同算法的实现,用于在任意磁场强度下评估高斯型LAO上的ERI。比较了广义麦克默奇 - 戴维森(MD)、黑德 - 戈登 - 波普尔(HGP)和里斯求积方案的效率。对于里斯求积实现,我们在求积根和权重的计算中避免使用高精度算术和插值方案,从而能够将该算法无缝应用于广泛的磁场范围。通过数值应用比较每种广义算法的效率,根据ERI的总角动量对其进行分类,并评估其在基组和收缩基组中的性能。与零场积分评估一样,没有一种算法对所有角动量都是最优的;因此,提出了一种简单的混合方案,该方案为每个壳四重态选择计算ERI的最有效方法。混合方法比单独使用任何一种算法都要高效得多。