Suppr超能文献

跨类迁移学习的联合语义和潜在属性建模。

Joint Semantic and Latent Attribute Modelling for Cross-Class Transfer Learning.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2018 Jul;40(7):1625-1638. doi: 10.1109/TPAMI.2017.2723882. Epub 2017 Jul 6.

Abstract

A number of vision problems such as zero-shot learning and person re-identification can be considered as cross-class transfer learning problems. As mid-level semantic properties shared cross different object classes, attributes have been studied extensively for knowledge transfer across classes. Most previous attribute learning methods focus only on human-defined/nameable semantic attributes, whilst ignoring the fact there also exist undefined/latent shareable visual properties, or latent attributes. These latent attributes can be either discriminative or non-discriminative parts depending on whether they can contribute to an object recognition task. In this work, we argue that learning the latent attributes jointly with user-defined semantic attributes not only leads to better representation but also helps semantic attribute prediction. A novel dictionary learning model is proposed which decomposes the dictionary space into three parts corresponding to semantic, latent discriminative and latent background attributes respectively. Such a joint attribute learning model is then extended by following a multi-task transfer learning framework to address a more challenging unsupervised domain adaptation problem, where annotations are only available on an auxiliary dataset and the target dataset is completely unlabelled. Extensive experiments show that the proposed models, though being linear and thus extremely efficient to compute, produce state-of-the-art results on both zero-shot learning and person re-identification.

摘要

许多视觉问题,如零样本学习和人员重新识别,可以被视为跨类迁移学习问题。由于中层语义属性在不同对象类别之间共享,属性已被广泛研究用于跨类知识迁移。大多数以前的属性学习方法仅关注于人类定义/可命名的语义属性,而忽略了存在未定义/潜在可共享的视觉属性或潜在属性的事实。这些潜在属性可以是有区别的或无区别的部分,具体取决于它们是否有助于对象识别任务。在这项工作中,我们认为,与用户定义的语义属性一起学习潜在属性不仅会导致更好的表示,而且有助于语义属性预测。提出了一种新的字典学习模型,该模型将字典空间分解为对应于语义、潜在判别和潜在背景属性的三个部分。然后,通过遵循多任务迁移学习框架来扩展这种联合属性学习模型,以解决更具挑战性的无监督域自适应问题,其中仅在辅助数据集上有注释,而目标数据集完全没有注释。广泛的实验表明,所提出的模型虽然是线性的,因此计算效率极高,但在零样本学习和人员重新识别方面都取得了最先进的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验