Suppr超能文献

EmDL:从文献中提取 miRNA-药物相互作用。

EmDL: Extracting miRNA-Drug Interactions from Literature.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2019 Sep-Oct;16(5):1722-1728. doi: 10.1109/TCBB.2017.2723394. Epub 2017 Jul 6.

Abstract

The microRNAs (miRNAs), regulators of post-transcriptional processes, have been found to affect the efficacy of drugs by regulating the biological processes in which the target proteins of drugs may be involved. For example, some drugs develop resistance when certain miRNAs are overexpressed. Therefore, identifying miRNAs that affect drug effects can help understand the mechanisms of drug actions and design more efficient drugs. Although some computational approaches have been developed to predict miRNA-drug associations, such associations rarely provide explicit information about which miRNAs and how they affect drug efficacy. On the other hand, there are rich information about which miRNAs affect the efficacy of which drugs in the literature. In this paper, we present a novel text mining approach, named as EmDL (Extracting miRNA-Drug interactions from Literature), to extract the relationships of miRNAs affecting drug efficacy from literature. Benchmarking on the drug-miRNA interactions manually extracted from MEDLINE and PubMed Central, EmDL outperforms traditional text mining approaches as well as other popular methods for predicting drug-miRNA associations. Specifically, EmDL can effectively identify the sentences that describe the relationships of miRNAs affecting drug effects. The drug-miRNA interactome presented here can help understand how miRNAs affect drug effects and provide insights into the mechanisms of drug actions. In addition, with the information about drug-miRNA interactions, more effective drugs or combinatorial strategies can be designed in the future. The data used here can be accessed at http://mtd.comp-sysbio.org/.

摘要

微小 RNA(miRNA)是转录后过程的调控因子,通过调节药物靶蛋白可能参与的生物过程,已被发现会影响药物的疗效。例如,当某些 miRNA 过表达时,某些药物会产生耐药性。因此,鉴定影响药物作用的 miRNA 有助于了解药物作用的机制并设计更有效的药物。尽管已经开发了一些计算方法来预测 miRNA-药物关联,但这些关联很少提供有关哪些 miRNA 以及它们如何影响药物疗效的明确信息。另一方面,文献中有丰富的信息表明哪些 miRNA 会影响哪些药物的疗效。在本文中,我们提出了一种新颖的文本挖掘方法,称为 EmDL(从文献中提取 miRNA-药物相互作用),用于从文献中提取影响药物疗效的 miRNA 关系。在基于 MEDLINE 和 PubMed Central 手动提取的药物-miRNA 相互作用的基准测试中,EmDL 优于传统的文本挖掘方法以及其他用于预测药物-miRNA 关联的流行方法。具体来说,EmDL 可以有效地识别描述影响药物作用的 miRNA 关系的句子。这里呈现的药物-miRNA 相互作用组可以帮助理解 miRNA 如何影响药物作用,并深入了解药物作用的机制。此外,利用有关药物-miRNA 相互作用的信息,可以在未来设计更有效的药物或组合策略。此处使用的数据可在 http://mtd.comp-sysbio.org/ 上获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验